Cronologic

User Guide

limelagger

www.cronologic.de

2

Contents

1 Introduction

1.1 Features

1.2 Applications

2 Hardware

2.1 InstallingtheBoard

2.2 TimeTagger4 Inputs and Connectors

3 TimeTagger4 Functionality

3.1 GroupingandEvents
3.2 Auto-Triggering Function Generator
3.3 ContinuousMode L.
3.4 Configurable InputDelay
3.5 Timing Generator (TiGer)

4 Driver Programming API

41 Constants
4.2 DriverInformation
4.3 Initialization

4.3.1 Structure timetagger4_init_parameters

4.4 Status Information Lo L
4.4.1 Functions for Information Retrieval
4.4.2 Structure timetagger4_static_info
4.4.3 Structure timetagger4_param_info
4.4.4 Structure timetagger4_fast_info

45 Configuration.
4.5.1 Structure timetagger4_configuration
4.5.2 Structure timetagger4_trigger
4.5.3 Structure timetagger4_tiger_block
4.5.4 Structure timetagger4_channel
4.5.5 Structure timetagger4_delay_config

cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

5 Run Time Control 23

5.1 RunTime Control 23
5.2 Readout 23
5.2.1 Input Structure timetaggerd_read_in 24

5.2.2 Input Structure timetaggerd_read_out 24

6 Output Data Format 25
6.1 Output Structure crono_packet 25

7 Code Example 27
8 Technical Data 34
8.1 TDC CharacteristiCs o v i e s e e e e 34
8.1.1 TDC measurement Characteristics for Gen 1 TimeTaggerd 34

8.1.2 TDC measurement Characteristics for Gen 2 TimeTaggerd 35

8.1.3 TimeBase. 35

8.2 Electrical Characteristics 36
8.2.1 PowerSupply 36

8.2.2 TDCINPULS . . . o o e e e e e 36

8.3 Information Required by DINEN 61010-1. o o . 37
8.3.1 Manufacturer e 37

8.3.2 Intended Use and System Integration L L. 37

8.3.3 Environmental Conditions for Storage 37

8.3.4 Environmental Conditions for Operation 38

8.3.5 Cooling o e 38

8.3.6 Recycling 38

9 Revision History 39
9.1 Firmware Gen T e e 39
9.2 Firmware Gen2 e 39
9.3 Driver&Applications 40
9.4 UserGuide 41
Erratum 41

3 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

The TimeTagger4 is a common-start low resolution high throughput time-to-digital converter. Time-
stamps of leading or trailing edges (or both) of digital pulses are recorded. The TimeTagger4 pro-
duces a stream of output packets, each containing data from a single start event. The relative time-
stamps of all stop pulses that occur within a configurable range are grouped into one packet.

4-channel common start TDC

¢ Quantisation (measurement resolution): 100 ps to 1000 ps

e Standard Range: 8.388 ms for Gen 1 and 1.677 ms for Gen 2 (24 bits)

e Extended Range: 2.147 s for Gen 1 and 0.429 s for Gen 2 (31 bits)

e Double-pulse resolution: twice the quantisation size

¢ Dead time between groups: none

® Minimum interval between starts: 4 ns for Gen 1 and 3.2 ns for Gen 2

e L0 FIFO: 1000 words/channel for Gen 1 and 4000 words/channel for Gen 2

¢ Up to 8000 Hits per Packet

® 510 0.625 GHz/s for bursts of up to 4096 starts

e 5to0 0.625 GHits/s per channel for bursts of up to 3900 stops

e 40 MHits/s per channel of sustained stops

* 60 MHits/s over all channels of sustained stops

e PCle x1 interface

The TimeTagger4 exists in different variants and resolutions from TimeTagger4-1G to TimeTagger4-

10G.

Parameter -1G -2G -1.25G -2.5G -5G -10G
Quantisation 1000 ps 500 ps 800 ps 400 ps 200 ps 100 ps
Data Format Bin Size 500 ps 500 ps 100 ps 100 ps 100 ps 100 ps
DNL and INL 0.01LSB | 0.01LSB | 0.01LSB | 0.01LSB | 0.01LSB | 0.3LSB
PCle line rate Gen 1 Gen 1 Gen2 Gen?2 Gen?2 Gen?2
Readout Rate 200MB/s | 200MB/s | 400MB/s | 400 MB/s | 400 MB/s | 400 MB/s
Status end of life | end of life | active active active active

4 cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

1.2 Applications

The TimeTagger4 can be used in all time measurement applications where a common-start setup with
100 ps resolution is sufficient. For alternatives with higher resolution, more channels or higher readout
rates check our TDC website www.cronologic.de.

The TimeTagger4 is well suited for the following applications:

e [IDAR down to 8 cm resolution
¢ blade oscillation measurements
e reciprocal counters

e coincidence measurements

e quantum key distribution (QKD)

e time correlated single photon counting (TCSPC)

5| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de/produkte/products-overview#tdcdata
https://www.cronologic.de

6

2 Hardware

2.1 Installing the Board

The TimeTagger4 board can be installed in any PCle-CEM slot with x1 or more lanes. Make sure the
PC is powered off and the main power connector is disconnected while installing the board.

2.2 TimeTagger4 Inputs and Connectors

Figure 2.1 shows the location of the inputs on the slot bracket.

o008 o ;
Stop AD stan)

Figure 2.1 Input connectors of the TimeTagger4 on the PCle
bracket.

Lemo 00 connector

:: _
L

>
@
(ap]

DAC

dc_offset[i]

Figure 2.2 Input circuit for each of the input channels.

LEMO-00 connectors are used for input connection. The inputs are AC-coupled and have an
impedance of 50 Q. A schematic of the input circuit is shown in Figure 2.2. The digital threshold for
any input can be adjusted to comply with a multitude of single-ended signaling standards. The thresh-
old can also be used to configure the input for either positive or negative pulses.

The connectors can also be used as outputs. DC-coupled output pulses for automatic internal trigger-
ing and control of external devices can be generated using the TiGer timing pattern generator. See

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

Figure 2.3 Schematic view of a TimeTagger4 Gen 1 board
showing the inter-board connectors.

Section 3.5 for details on the TiGer. Furthermore, for Gen 1 boards three inter-board connectors can
be found near the top edge of the TimeTagger4 board, as displayed in Figure 2.3. Connector J25 is
reserved for future use. The pinout of connector J12 is shown in Table 2.1 and the pinout of connec-
tor J6 is depicted in Table 2.2. Gen 2 boards do not posses these three connectors.

7 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

8

cronologic GmbH & Co. KG

Pin Name
1,2 GND
3,4 external CLK in N, external CLK in P
56 GND
7,8 reserved/NC
9,10 GND
11,12 reserved/NC
13,14 GND
15,16 reserved/NC
17,18 GND
19, 20 reserved/NC
21,22 GND
23,24 reserved/NC
25,26 GND
27,28 reserved/NC
29,30 GND
31,32 reserved/NC
33,34 GND

Table 2.1 Pinout of connector J12.

Table 2.2 Pinout of connector Jé6.

Pin Name
1 +3.3V
2-9 | reserved/NC
10 GND

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

9

3 TimeTagger4 Functionality

The TimeTagger4 is a “classic” common start time-to-digital converter.

It records the time difference between a leading or trailing edge on the start input to the leading and
trailing edges of the stop inputs. Rising and falling edges of the stop channels A-D can be enabled
individually. The measurements are quantized as shown in Section 1.71. The timestamps are recorded
in integer multiples of the corresponding bin size. Transitions of the input signals are called hits. To
reliably detect hits the signal has to be stable for more than one quantisation interval before and after
the edge. Triggers on the start channel must not occur less than 5 ns apart. The TimeTagger4 records
events without dead time at a readout rate of about 48 MHits/s for Gen 1 and 60 MHits/s for Gen 2.

3.1 Grouping and Events

In typical applications a start hit is followed by a multitude of stop hits. If grouping is enabled, the hits
recorded are managed in groups (which are called “events” in some applications).

Start] |
] N
B o |
||
start; . ‘1
4> stop

Figure 3.1 Acquired hits are merged to groups as explained
in the text.

Figure 3.1 shows a corresponding timing diagram. The user can define the range of a group, i.e., the
time window within which hits on the stop channels are recorded. Hits occurring outside of that time
window are discarded.

Different ranges can be set for each of the stop channels by setting corresponding values for chan-
nel[i].startand channel[i].stop values.

The values need to be set as multiples of the bin size and must not be negative.

Ogsta/'tgstop§216—1

If a second start is recorded within the range of a group, the current group is finished and a new
group is started. Consecutive stops will be assigned to the new group (as long as they are within the
group range).

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

10

3.2 Auto-Triggering Function Generator

Some applications require internal periodic or random triggering. The TimeTagger4 function genera-
tor provides this functionality.

The delay between two trigger pulses of this trigger generator is the sum of two components: A fixed
value M and a pseudo-random value with a range given by the exponent N.

The period is
T=M+[1.2N -1

clock cycles with a duration of 4 ns per cycle for Gen 1 and 3.2 ns for Gen 2 TimeTagger4. The stan-
dard values of M = 62500 and N = O result in a frequencies of 4 kHz for TimeTagger4 Gen 1 and 5 kHz
for Gen 2 devices.

The trigger can be used as a source for the TiGer unit (see Section 3.5) and defines the period for the
continuous mode (see Section 3.3).

3.3 Continuous Mode

This feature is only available for Gen 2 devices of the TimeTagger4.

The TimeTagger4 continuously records stop signals even without a start signal connected. The data
stream contains periodic packets with an absolute timestamp of 64 bits, followed by a list of stops
relative to this timestamp. The period of the timestamps can be adjusted using the Auto-Triggering
Function Generator (see Section 3.2) to adapt them to your evaluation interval. Lower frequencies will
create larger packets and have therefore a larger latency for receiving packets, potentially overflowing
the buffers. Frequencies lower or equal to 600 Hz will contain rollover. Apart from that the choice is
arbitrary.

3.4 Configurable Input Delay

This feature is only available for Gen 2 devices of the TimeTagger4.

Each of the five input channels of the TimeTagger4 can be delayed for up to 204.6 ns with a 200 ps
granularity.

3.5 Timing Generator (TiGer)

Each digital LEMO-00 input can be used as an LVCMOS trigger output. The TiGer functionality can be
configured independently for each connector. See Section 4.5.3 for a full description of the configura-
tion options.

Figure 3.2 shows how the TiGer blocks are connected. They can be triggered by an OR of an arbitrary
combination of inputs, including the auto-trigger . Each TiGer can drive its output to its correspond-
ing LEMO connector. This turns the connector into an output.

The TiGer is DC coupled to the connector. Connected hardware must not drive any signals to con-
nectors used as outputs, as doing so could damage both the TimeTagger4 and the external hard-

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

ware. Pulses that are short enough for the input AC coupling are available as input signals to the
TimeTagger4. This can be used to measure exact time differences between the generated output sig-
nals and input signals on other channels. When using one of the input channels as a source for the
TiGer, the expected latency between signal input and TiGer output is roughly 95 ns.

o |

| enable_lemo_output
I enable_lemo_output
| enable_lemo_output
enable_lemo_output

threshold threshold threshold threshold threshold
trigger || trigger H trigger || trigger H trigger || 1 || auto

negate

[Tigers | ‘i —_
negate

o] >
negate

[Tigers |) >
negate

[Tigere | ‘E >
negate

[Tigern |) D

Figure 3.2 TiGer blocks can generate outputs that are also
available on inputs.

11 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

12

4 Driver Programming API

The APl is a DLL with C linkage.

The functions provided by the driver are declared in TimeTagger4_interface.h which must be
included by your source code. You must tell your compiler to link with the file xTDC4_driver_64.lib.
When running your program the dynamic link library containing the actual driver code must re-
side in the same directory as your executable or be in a directory included in the PATH variable.
For Linux it is provided only as a static library lTibxtdc4_driver.a The file for the DLL is called
XTDC4_driver_64.d11.

All these files are provided with the driver installer that can be downloaded from the product website
www.cronologic.de. By default, the installer will place the files into the directory C: \Program Files\
cronologic\TimeTagger4\driver. A coding example can be found on
github.com/cronologic-de/xtdc_babel.

4.1 Constants

#define TIMETAGGER4_TDC_CHANNEL_COUNT 4
The number of TDC input channels.

#define TIMETAGGER4_TIGER_COUNT 5
The number of timing generators. One for each TDC input and one for the start input.

#define TIMETAGGER4_TRIGGER_COUNT 16
The number of potential trigger sources for the timing generators. One for each TDC input, one
for the Start input plus some specials. See Section 4.5.3 for details.

#define TIMETAGGER4_OK 0
Error codes are set by the APl functions to this value if there has been no error. Other error
codes can be found in TimeTagger4_interface.h

4.2 Driver Information

Even if there is no board present the driver revision can be queried using these functions.

int timetagger4_get_driver_revision()
Returns the driver version, same format as timetagger4_static_info.driver_revision.
This function does not require a TimeTagger4 board to be present.

const char* timetaggerd4_get_driver_revision_str()
Returns the driver version including SVN build revision as a string.

int timetagger4_count_devices(int *error_code, char **error_message)
Returns the number of boards present in the system that are supported by this driver. Pointers
to an error code and message variable have to be provided. If error_code does not equal
#define TIMETAGGER4_OK = 0, the error message will contain what went wrong. E.g., crono
kernel was not properly installed.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de
https://github.com/cronologic-de/xtdc_babel/tree/main/timetagger4_user_guide_example
https://www.cronologic.de

4.3 Initialization

The card must be initialized first before reading data. Normally the process is to get the default init

parameters and change some values. E.g., choose one of multiple cards by the index or use a larger
buffer.

int timetagger4_get_default_init_parameters(timetagger4_1init_parameters *init)
Sets up the standard parameters. Gets a set of default parameters for timetagger4_init().
This must always be used to initialize the timetagger4_init_parameters structure before
modifying it and passing it to timetagger4_init.

timetagger4_device timetagger4_init(timetagger4_init_parameters *params,
int xerror_code, char **error_message)

Opens and initializes the TimeTagger4 board with the given index.
error_code must point to an integer where the driver can write the error code.

error_message must point to a pointer to char. The driver will allocate a buffer for zero-termi-
nated error message and store the address of the buffer in the location provided by the user.

The parameter params is a pointer to a structure of type timetagger4_init_parameters that
must be completely initialized by get_default_init_parameters().

int timetagger4_close(timetagger4_device *device)
Closes the devices, releasing all resources.

4.3.1 Structure timetagger4 init_parameters

int version
The version number. Must be setto TIMETAGGER4_API_VERSION.

int card_dindex
The index in the list of TimeTagger4 boards that should be initialized.

There might be multiple boards in the system that are handled by this driver as reported by
timetagger4_count_devices. This index selects one of them. Boards are enumerated de-

pending on the PCle slot. The lower the bus number and the lower the slot number the lower
the card index.

int board_1id
The global index in all cronologic devices.

This 8-bit number is filled into each packet created by the board and is useful if data streams
of multiple boards will be merged. If only TimeTagger4 cards are used this number can

be set to the card_index. If boards of different types that use a compatible data for-

mat are used in a system each board should get a unique id. Can be changed with int
timetagger4_set_board_id(timetagger4_device *device, int board_id).

uint64_t buffer_size[8]
The minimum size of the DMA buffer.
If set to 0 the default size of 16 MByte is used. For the TimeTagger4 only the first entry is used.

int buffer_type
The type of buffer. Must be set to 0.

13 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

14

#define TIMETAGGER4_BUFFER_ALLOCATE 0
#define TIMETAGGER4_BUFFER_USE_PHYSICAL 1 //unsupported

uint64_t buffer_address
This is set by timetagger4_init() to the start address of the reserved memory.

The buffers will be allocated with the sizes given above. Make sure that the memory is large
enough.

int varianto
Setto 0. Can be used to activate future device variants such as different base frequencies.

int device_type
A constant for the different devices of cronologic CRONO_DEVICE_x.

Initialized by timetagger4_get_default_init_parameters(). Thisvalue is identical to the
PCI Device ID. Must be left unchanged.

#define CRONO_DEVICE_HPTDC Ox1
#define CRONO_DEVICE_NDIGO5G Ox2
#define CRONO_DEVICE_NDIGO256M Ox4
#define CRONO_DEVICE_xTDC4 0Ox6
#define CRONO_DEVICE_TIMETAGGER4 0x8
#define CRONO_DEVICE_XHPTDCS8 0xC

#define CRONO_DEVICE_NDIGO6 OxD

int dma_read_delay
The update delay of the write pointer after a packet has been sent over PCle. Specified in multi-
ples of 16 ns. Should not be changed by the user.

int use_ext_clock
If setto 1, use external 10 MHz reference. If set to 0, use internal reference.

4.4 Status Information

4.4.1 Functions for Information Retrieval

The driver provides functions to retrieve detailed information on the board type, its configuration, set-
tings, and state. The information is split according to its scope and the computational requirements to
query the information from the board.

int timetagger4_get_device_type(timetagger4_device xdevice)
Returns the type of the device as CRONO_DEVICE_TIMETAGGER4.

const char* timetagger4_get_last_error_message(timetagger4_device *device)
Returns most recent error message.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

15

int timetagger4_get_fast_info(timetagger4_device *device,
timetagger4_fast_info *info)
Returns fast dynamic information.

This call gets a structure that contains dynamic information that can be obtained within a few
microseconds.

int timetagger4_get_param_info(timetagger4_device *device,
timetagger4_param_info *info)
Returns configuration changes.

Gets a structure that contains information that changes indirectly due to configuration changes.

int timetagger4_get_static_info(timetagger4_device xdevice,
timetagger4_static_info xinfo)
Contains static information.

Gets a structure that contains information about the board that does not change during run
time.

4.4.2 Structure timetagger4 static_info

This structure contains information about the board that does not change during run time. It is pro-
vided by the function timetagger4_get_static_info().

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The incre-
ment can be larger than one to match driver version numbers or similar.

int board_1id
ID of the board.

int driver_revision
Encoded version number for the driver.

The lower three bytes contain a triple-level hierarchy of version numbers, e.g., 9x010103 en-
codes version 1.1.3.

The version adheres to the Semantic Versioning scheme as defined at https://semver.org. A
change in the first digit generally requires a recompilation of user applications. Changes in the
second digit denote significant improvements or changes that don't break compatibility and the
third digit increments with minor bug fixes and similar updates that do not affect the API.

int driver_build_revision
Build number of the driver according to cronologic’s internal versioning system.

int firmware_revision
Revision number of the FPGA configuration.

int board_revision
Board revision number.

The board revision number can be read from a register. It is a four-bit number that changes
when the schematic of the board is changed. This should match the revision number printed
on the board.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://semver.org
https://www.cronologic.de

16

int board_configuration
Describes the schematic configuration of the board.

The same board schematic can be populated in multiple variants. This is an 8-bit code that can
be read from a register.

int subversion_revision
Subversion revision id of the FPGA configuration source code.

int chip_id
Reserved.

int board_serial
Serial number.

Year and running number are concatenated in 8.24 format. The number is identical to the one
printed on the silvery sticker on the board.

unsigned int flash_serial_high
unsigned int flash_serial_low
64-bit manufacturer serial number of the flash chip

crono_bool_t flash_valid
If not 0, the driver found valid calibration data in the flash on the board and is using it. This
value is not applicable for the TimeTagger4.

char calibration_date[20]
DIN EN ISO 8601 string YYYY-MM-DD HH:MM of the time when the card was calibrated.

char bitstream_date[20]
DIN EN ISO 8601 string YYYY-MM-DD HH:MM of the time when the bitstream on the card was

created.

double delay_bin_size
Bin size of delay in picoseconds. The increment of the delay_config.delay field for the
TimeTagger4.

double auto_trigger_ref_clock
Auto trigger clock frequency. The clock frequency of the auto trigger in Hertz used for calculat-
ing the auto_trigger_period.

uint32_t rollover_period
The number of bins in a rollover period. This is a power of 2 (the maximum value of a hit time-
stamp is this value minus 1)

4.4.3 Structure timetagger4 param_info

This structure contains configuration changes provided by timetagger4_get_param_info().
int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The incre-
ment can be larger than one to match driver version numbers or similar.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

17

double binsize
Bin size (in ps) of the measured TDC data.

int board_1id
Board ID.
The board uses this ID to identify itself in the output data stream. The ID takes values between 0
and 255.
int channels
Number of TDC channels of the board.
Fixed at 4.
int channel_mask
Bit assignment of each enabled input channel.
Bit® < n < 4issetif channel nis enabled.

int64_t total_buffer
The total amount of DMA buffer in bytes.

double packet_binsize
For the TimeTagger4 the packet binsize is equal to the binsize and depends on the generation
of the card. Gen 1 boards have a packet binsize of 500 ps, while Gen 2 boards have 100 ps.

double quantisation

Quantisation or measurement resolution. Depending on the board variant this ranges from
100 ps to 1000 ps.

-1G -2G -1.25G | -2.5G | -5G -10G

1000 ps | 500 ps | 800 ps | 400 ps | 200 ps | 100 ps

This means, that for -1.25G the lower 3 bits in the timestamps are zero.

4.4.4 Structure timetagger4 fast info

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The incre-
ment can be larger than one to match driver version numbers or similar.

int tdc_rpm
Speed of the TDC fan in rounds per minute. Reports 0 if no fan is present.

int fpga_rpm
Speed of the FPGA fan in rounds per minute. Reports 0 if no fan is present.

int alerts
Alert bits from the temperature sensor and the system monitor. The TimeTagger4 does not im-
plement any temperature alerts.

int pcie_pwr_mgmt
Always 0.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

int pcie_link_width
Number of PCle lanes the card uses. Should always be 10 for the TimeTagger4.

int pcie_max_payload
Maximum size in bytes for one PCle transaction. Depends on system configuration.

4.5 Configuration

The device is configured with a configuration structure. The user should first obtain a structure that
contains the default settings of the device read from an on-board ROM, then modify the structure as
needed for the user application and use the result to configure the device.

int timetagger4_configure(timetagger4_device *device,
timetagger4_configuration *config)
Configures the timetagger4_manager.

int timetagger4_get_current_configuration(timetagger4_device xdevice,
timetagger4_configuration *config)
Gets current configuration. Copies the current configuration to the specified config pointer.

int timetagger4_get_default_configuration(timetagger4_device xdevice,
timetagger4_configuration *config)
Gets default configuration. Copies the default configuration to the specified config pointer.

4.5.1 Structure timetagger4 configuration

This is the structure containing the configuration information. It is used in conjunction with
timetagger4_get_default_configuration(), timetagger4_get_current_configuration()
and timetagger4_configure().

It uses multiple substructures to configure various aspects of the board.

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The incre-
ment can be larger than one to match driver version numbers or similar.

int tdc_mode
TDC mode. Can be grouped or continuous defined as follows:

#define TIMETAGGER4_TDC_MODE_GROUPED 0

#define TIMETAGGER4_TDC_MODE_CONTINUOUS 1

* Grouped functionality is explained in Section 3.1.

e Continuous mode is explained in Section 3.3. The auto_trigger_period needs to be
set appropriately and channel[i].stop must be larger than auto_trigger_period
(respecting the different periods or can be set to maximum of @xFFFFFFFF), if all events
need to be captured.

18 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

crono_bool_t start_rising
Not applicable for the TimeTagger4. Rising and/or falling edge are configured using the
timetagger4_trigger structure (see Section 4.5.2).

double dc_offset [TIMETAGGER4_TDC_CHANNEL_COUNT + 1]
Set the threshold voltage for the input channels S, A ...D (see Figure 4.1).

e dc_offset[0] : threshold for channel Start
e dc_offset[1 - 4]: threshold for channels A ...D

The supported range is —1.32V to 1.18 V. This should be close to 50% of the height of the input
pulse. Examples for various signaling standards are defined as follows:

#define TIMETAGGER4_DC_OFFSET_P_NIM +0.35
#define TIMETAGGER4_DC_OFFSET_P_CMOS +1.18
#define TIMETAGGER4_DC_OFFSET_P_LVCMOS_33 +1.18
#define TIMETAGGER4_DC_OFFSET_P_LVCMOS_25 +1.18
#define TIMETAGGER4_DC_OFFSET_P_LVCMOS_18 +0.90
#define TIMETAGGER4_DC_OFFSET_P_TTL +1.18
#define TIMETAGGER4_DC_OFFSET_P_LVTTL_33 +1.18

#define TIMETAGGER4_DC_OFFSET_P_LVTTL_25 +1.18

#define TIMETAGGER4_DC_OFFSET_P_SSTL_3 +1.18
#define TIMETAGGER4_DC_OFFSET_P_SSTL_2 +1.18
#define TIMETAGGER4_DC_OFFSET_N_NIM -0.35
#define TIMETAGGER4_DC_OFFSET_N_CMOS -1.32

#define TIMETAGGER4_DC_OFFSET_N_LVCMOS_33 -1.32
#define TIMETAGGER4_DC_OFFSET_N_LVCMOS_25 -1.25
#define TIMETAGGER4_DC_OFFSET_N_LVCMOS_18 -0.90
#define TIMETAGGER4_DC_OFFSET_N_TTL -1.32
#define TIMETAGGER4_DC_OFFSET_N_LVTTL_33 -1.32
#define TIMETAGGER4_DC_OFFSET_N_LVTTL_25 -1.25
#define TIMETAGGER4_DC_OFFSET_N_SSTL_3 -1.32

#define TIMETAGGER4_DC_OFFSET_N_SSTL_2 -1.25

The inputs are AC coupled. Thus, the absolute voltage is not important for pulse inputs. It is the
relative pulse amplitude that causes the input circuits to switch. The parameter must be set to
the relative switching voltage for the input standard in use. If the pulses are negative, a negative
switching threshold must be set and vice versa.

timetagger4_trigger trigger [TIMETAGGER4_TRIGGER_COUNT]
Configuration of the polarity of the external trigger sources (see Section 4.5.2). These are used
as inputs for the TiGer blocks and as inputs to the time measurement unit.

19 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

Lemo 00 connector

>——| +
i
L

>
¥
™

DAC

dc_offset[i]

Figure 4.1 Input circuit for each of the input channels.

timetagger4_tiger_block tiger_block[TIMETAGGER4_TIGER_COUNT]
Configuration of the timing generators (TiGer, see Section 4.5.3).

timetagger4_channel channel[TIMETAGGER4_TDC_CHANNEL_COUNT]
Configuration of the TDC channels.

timetagger4_lowres_channel
timetagger4_lowres_channel[TIMETAGGER4_LOWRES_CHANNEL_COUNT]
Not applicable for the TimeTagger4.

uint32_t auto_trigger_period
uint32_t auto_trigger_random_exponent
Create a trigger either periodically or randomly. There are two parameters

M = auto_trigger_period

N = random_exponent

that result in a distance between triggers of T clock cycles.

If the autotrigger is used for the continuous mode the following boundaries apply.

T=M+[1..2Y] -1
31 <M < 78125000
0<N<32

Otherwise the parameters can be used with the following boundaries.

T=M+[1..2Y -1
0<M< 2%
0<N<32

There is no enable or reset. The auto-trigger is running continuously. The usage of this trigger
can be configured in the TiGer block source field.

timetagger4_delay_config
timetagger4_delay_config[TIMETAGGER4_TDC_CHANNEL_COUNT+1]
Configuration of the channel delay values

uint32_t ignore_empty_packets
If enabled (any value but 0), do not write empty packets to the output stream. Disabled by de-
fault.

20 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

21

4.5.2 Structure timetagger4_trigger

For each input, this structure determines whether rising or falling edges on the inputs create trigger
events for the TiGer blocks.

crono_bool_t falling

crono_bool_t rising
Select for which edges a trigger event is created inside the FPGA. Set the corresponding flag
for one of the edges or both edges when using the input with a TiGer.

4.5.3 Structure timetagger4 tiger_block

See Section 3.5 for additional information.

crono_bool_t enable
Activates the timing generator (TiGer).

crono_bool_t negate
Inverts output polarity. Default is set to false.

crono_bool_t retrigger
Enables retrigger setting.

If enabled the timer is reset to the value of the start parameter, whenever the input signal is set
while waiting to reach the stop time.

crono_bool_t extend
Not implemented.

crono_bool_t enable_lemo_output
Enables the LEMO output. Drive the TiGer Signal to the corresponding LEMO connector as
an output. This is DC coupled, so make sure that you do not any devices connected as inputs.
Pulses created by the TiGer are visible at the inputs of the TimeTagger4 and can be measured
again to get the exact timing.

uint32_t start

uint32_t stop
In multiples of 4 ns for Gen 1 and 3.2 ns for Gen 2 TimeTagger4. The time during which the
TiGer output is set, relative to the trigger input. The parameters start and stop must fulfill the
following conditions

0<start<stop<2'®—1.

If retriggering is enabled, the timer is reset to the value of the start parameter whenever the
input signal is set while waiting for the stop time.

int sources
A bit mask with a bit set for all trigger sources that can trigger this TiGer block. Default is
TIMETAGGER4_TRIGGER_SOURCE_S

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

#define TIMETAGGER4_TRIGGER_SOURCE_NONE 0x00000000

#define TIMETAGGER4_TRIGGER_SOURCE_S Ox00000001
#define TIMETAGGER4_TRIGGER_SOURCE_A Ox00000002
#define TIMETAGGER4_TRIGGER_SOURCE_B OXx00000004
#define TIMETAGGER4_TRIGGER_SOURCE_C Ox00000008
#define TIMETAGGER4_TRIGGER_SOURCE_D Ox00000010

#define TIMETAGGER4_TRIGGER_SOURCE_AUTO 0x00004000

#define TIMETAGGER4_TRIGGER_SOURCE_ONE Ox00008000

4.5.4 Structure timetagger4 channel

Contains TDC channel settings.

crono_bool_t enabled
Enable the TDC channel.

crono_bool_t rising
Not applicable for TimeTagger4. Rising and/or falling edge are configured using the
timetagger4_trigger structure (see Section 4.5.2).

uint32_t start

uint32_t stop
Veto function for grouping of hits into packets in multiples of the binsize. Only hits between
start and stop are read out. The parameters must adhere to the following relations:

0 < start < stop < 2%

4.5.5 Structure timetagger4 delay_config

Contains configurable delay value for TimeTagger4 Gen 2 (see Section 3.4).

uint32_t delay
Delay in static_info.delay_bin_size (currently 200 ps) for a channel. The possible values
are the following

0 < delay <1023

22 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

5 Run Time Control

5.1 Run Time Control

Once the devices are configured the following functions can be used to control the behaviour of the
devices. All of these functions return quickly with very little overhead, but they are not guaranteed to
be thread safe.

int timetagger4_start_capture(timetagger4_device *device)
Start data acquisition.

int timetagger4_pause_capture(timetagger4_device *device)
Pause a started data acquisition.

pause and continue have less overhead than start and stop but don't allow for a configuration
change.

int timetagger4_continue_capture(timetagger4_device *device)
Call this to resume data acquisition after a call to timetagger4_pause_capture().

pause and continue have less overhead than start and stop but don't allow for a configuration
change.

int timetagger4_stop_capture(timetagger4_device xdevice)
Stop data acquisition.

int timetagger4_start_tiger(timetagger4_device xdevice)

int timetagger4_stop_tiger(timetagger4_device *device)
Start and stop the timing generator. This can be done independently of the state of the data
acquisition.

5.2 Readout

The device provides a stream of packets, that are read in batches. A batch of packets is provided to
the application, it processes them, by storing important information in other structures. The batch that
were processed need to be acknowledged, so that the device can reuse the memory of these for the
next data. That means processing should be fast.

timetagger4_read_in 1in;
// automatically acknowledge all data as processed
in.acknowledge_last_read = 1;
volatile crono_packet*x p read_data.first_packet;
timetagger4_read_out out;
int status = timetagger4_read(device, &in, &out);
if (status == CRONO_READ_OK) {
while (p <= read_data.last_packet) {
processPacket(p);
p = crono_next_packet(p);

23 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

int timetagger4_acknowledge(timetagger4_device xdevice, crono_packet *packet)
Acknowledges the processing of the last read block. This is only necessary if
timetagger4_read() is not called with in.acknowledge_last_read set.

This feature allows to either free up partial DMA space early if there will be no call to
timetagger4_read() anytime soon. It also allows to keep data over multiple calls to
timetagger4_read() to avoid unnecessary copying of data.

int timetagger4_read(timetagger4_device xdevice, timetagger4_read_in *in,
timetagger4_read_out *out)
Return a pointer to an array of captured data in read_out. The result contains a batch of packets
of type timetagger4_packet. The batch is described by first_packet and last_packet in
the timetagger4_read_1in structure.

read_in provides parameters to the driver. A call to this method automatically allows the driver
to reuse the memory returned in the previous call if read_in.acknowledge_last_read is set.

Returns an error code as defined in the structure timetagger4_read_out.

crono_packet crono_next_packet(crono_packet *packet)
Iterates to the next packet in the batch.

5.2.1 Input Structure timetagger4_read_in

crono_bool_t acknowledge_last_read
If set timetagger4_read() automatically acknowledges packets from the last read. Otherwise
timetagger4_acknowledge () needs to be called explicitly by the user.

5.2.2 Input Structure timetagger4 read_out
crono_packet xfirst_packet
Pointer to the first packet that was captured by the call of timetagger4_read().

crono_packet *last_packet

Address of header of the last packet in the buffer. This packet is still valid, all data after this
packet is invalid.

int error_code
Assignments of the error codes.

#define CRONO_READ_OK 0]
#define CRONO_READ_NO_DATA 1
#define CRONO_READ_INTERNAL_ERROR 2

#define CRONO_READ_TIMEOUT 3

const char *error_message
The last error in human readable form, possibly with additional information about the error.

24 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

6 Output Data Format

6.1 Output Structure crono_packet

Output of a read call list is a group of crono_packet structures. Which have a variable length. The
structure contains the following fields.

uint8_t channel
Index of the source channel of the data. Pseudo channel 15 is used for rollovers.

uint8_t card
|dentifies the source card in case there are multiple boards present. Defaults to 0 if no value is
assigned to the parameter board_-id in structure timetagger4_init_parameters.

uint8_t type
The data stream consists of 32-bit unsigned data as signified by
CRONO_PACKET_TYPE_32_BIT_UNSIGNED = 6.

uint8_t flags
Bit field of TIMETAGGER4 _PACKET_FLAG_* bits:

#define TIMETAGGER4_PACKET_FLAG_ODD_HITS 1
If this bit is set, the last data word in the data array consists of one timestamp only which is lo-
cated in the lower 32 bits of the 64-bit data word (little endian).

#define TIMETAGGER4_PACKET_FLAG_SLOW_SYNC 2
Timestamp of a hit is above the range of 8-bit rollover number and 24-bit hit timestamp. The
group is closed, all other hits are ignored.

#define TIMETAGGER4_PACKET_FLAG_START_MISSED 4
The trigger unit has discarded packets due to a full FIFO because the data rate is too high.
Starts are missed and stops are potentially in wrong groups.

#define TIMETAGGER4_PACKET_FLAG_SHORTENED 8
The trigger unit has shortened the current packet due to a full pipeline FIFO because the data
rate is too high. Stops are missing in the current packet.

#define TIMETAGGER4_PACKET_FLAG_DMA_FIFO_FULL 16
The internal DMA FIFO was full. This is caused either because the data rate is too high on too
many channels. Packet loss is possible.

#define TIMETAGGER4_PACKET_FLAG_HOST_BUFFER_FULL 32

The host buffer was full. Might result in dropped packets. This is caused either because the data
rate is too high or by data not being retrieved fast enough from the buffer. Solutions are increas-
ing buffer size if the overload is temporary or by avoiding or optimizing any additional process-
ing in the code that reads the data.

uint32_t length
Number of 64-bit elements (each containing up to 2 TDC hits) in the data array. The number of
hits contained is equalto 2 * length - (flags & PACKET_FLAG_ODD_HITS) ? 1 : 0.

uint64_t timestamp
Coarse timestamp of the start pulse. Values are given in multiples of packet_binsize con-
tained in timetagger4_param_info.

25 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

26

uint64_t data[1]
Contains the TDC hits as a variable length array (length can be zero). The user can cast the array
to uint32_tx* to directly operate on the TDC hits. For the number of hits, see length. Structure
of one hit (32 bit):

bits 31 to 8|7 to 4|3 to O

content || TDC DATA FLAGS CHN

The timestamp of the hit is stored in bits 31 down to 8 in multiples of binsize contained in
timetagger4_param_info.

uint32_t timestamp
uint32_t flags
uint32_t channel

(hit >> 8) & OxF;
(hit >> 4) & OxF;
hit & OxF;

Bits 7 down to 4 are hit flags and have the following definitions:

e Bit 7: Not applicable for the TimeTagger4 and therefore always 0.

o #define TIMETAGGER4_HIT_FLAG_COARSE_TIMESTAMP 4 ¢ Bité
Bit 6: Always 1 for the TimeTagger4.

e #define TIMETAGGER4_HIT_FLAG_TIME_OVERFLOW 2 < Bit5
Bit 5: If set, this hit is a rollover. The time since the start pulse exceeded the 24-bit range
that can be encoded in a data word. This word does not encode a measurement. Instead
the readout software should increment a rollover counter that can be used as the upper
bits of consecutive time stamps. The counters must be reset for each packet. The total off-
set of a hit in picoseconds can be computed by

AT, = (#rollovers x timetagger4_static_info.rollover_period + TDC_DATA,;)

X timetagger4_param_info.binsize

e #define TIMETAGGER4_HIT_FLAG_RISING 1 < Bit4
Bit 4: Set if this hit is a rising edge. Otherwise, this word belongs to a falling edge.

Bits 3 down to 0: The channel number is given in the lowest nibble of the data word. A value of
0 corresponds to channel A, a value of 3 to channel D.

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

/7 Code Example

The following C++ source code shows how to initializes a a TimeTagger4 board, configure it and loop
over incoming packets.

If you are reading this documentation in portable document format, the source code of the C exam-
ple is also embedded as an attachment to the file. You can open it in an external viewer or save it to
disk by clicking on it. The source code can also be found on https://github.com/cronologic-de/xtdc

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4

27

babel/tree/main/timetaggerd_user_guide_example.

// timetagger4_user_guide_example.cpp : Example application for the TimeTagger4
#include <stdio.h>

#include <stdlib.h>

#include <chrono>

#include <thread>

#include "TimeTagger4_interface.h"

// If true the time tagger triggers a start periodically

// The time difference of signals on channel A are measured

// else start signal either from input or tiger is used (see below)

// frequency of start signal is printed and the hits are sampled

const bool USE_CONTINUOUS_MODE = false;

const bool USE_TIGER_START = true; // if false, external signal must be
// provided on start; not applicable if
// continuous mode is enabled

const bool USE_TIGER_STOPS = true; // if false please connect signals to
// some of channels A-D

timetagger4_devicex initialize_timetagger (int buffer_size,
int board_-id,
int card_index){
// prepare initialization
timetagger4_init_parameters params;

timetagger4_get_default_init_parameters(¶ms);
params.buffer_size[0] = buffer_size; // size of the packet buffer

params.board_id = board_-id; // value copied to "card" field of
// every packet, allowed range 0..255
params.card_index = card_index; // which of the TimeTagger4 board

// found in the system to be used
int error_code;
const char x err_message;
timetagger4_devicex device = timetagger4_init(¶ms,
&error_code,
&err_message);
if (error_code != CRONO_OK) {
printf("Could not init TimeTagger4 compatible board: %s\n",
err_message);
return nullptr;

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

Example Source Code

https://github.com/cronologic-de/xtdc_babel/tree/main/timetagger4_user_guide_example
https://github.com/cronologic-de/xtdc_babel/tree/main/timetagger4_user_guide_example
https://www.cronologic.de

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

28

int

cronologic GmbH & Co. KG

timetagger4_static_info static_info;
timetagger4_get_static_info(device, &static_info);
bool timeTaggerNG = static_info.board_revision >= 7;
if (USE_CONTINUOUS_MODE && !timeTaggerNG) {
printf("Cannot use continuous mode with TimeTagger 1G/2G: %s\n",
err_message) ;
timetagger4_close(device);
return nullptr;

}

return device;

configure_timetagger (timetagger4_devicex device) {

// prepare configuration

timetagger4_static_info static_info;
timetagger4_get_static_info(device, &static_info);
timetagger4_configuration config;

// fill configuration data structure with default values
// so that the configuration is valid and only parameters
// of interest have to be set explicitly
timetagger4_get_default_configuration(device, &config);

// set config of the 4 TDC channels
for (int i = 0; i < TIMETAGGER4_TDC_CHANNEL_COUNT; -++)

{
// enable recording hits on TDC channel
config.channel[i].enabled = true;
// define range of the group
config.channel[i].start = 0; // range begins right after start pulse
if (!USE_CONTINUOUS_MODE) {
config.channel[i].stop = 30000; // recording window stops
// after ~15 us
+
else {
config.channel[i].stop = Ox7fffffff; // trigger is independent
// of stops
// set to maximal value
}
// measure only rising edge for tiger (positive) pulse or falling
// for user (negative) pulse
config.trigger[TIMETAGGER4_TRIGGER_A + i].falling =
USE_TIGER_STOPS ? 0 : 1;
config.trigger [TIMETAGGER4_TRIGGER_A + i].rising =
USE_TIGER_STOPS ? 1 : 0;
}

// generate an 1internal 25 kHz trigger, used for tiger and continuous mode
config.auto_trigger_period =

(int) (static_info.auto_trigger_ref_clock / 25000);
config.auto_trigger_random_exponent = 0;

// setup TiGeR
// sending a signal to the LEMO outputs (and to the TDC on the same channel)

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

97

98

99
100
101
102
103
104
105
106
107
108
109
110
1M1
112
13
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

29

// requires proper 50 Ohm termination on the LEMO output to work reliably

// width of the 12ns pulse 1in the auto_trigger clock periods

int

pulse_width = (int) (12e-9 * static_info.auto_trigger_ref_clock);

if (!USE_CONTINUOUS_MODE) {

// use 200 kHz auto trigger to generate

// generate above configured auto trigger to generate a
// signal with 12 ns pulse width on LEMO output Start
config.tiger_block[0].enable = USE_TIGER_START ? 1 : 0;
config.tiger_block[0].start = 0;
config.tiger_block[0].stop = config.tiger_block[@].start + pulse_width;
config.tiger_block[0].negate = 0;
config.tiger_block[0].retrigger = 0;
config.tiger_block[0].extend = 0;
config.tiger_block[0].enable_lemo_output = 1;
config.tiger_block[0].sources = TIMETAGGER4_TRIGGER_SOURCE_AUTO;
// if TiGeR is used for triggering with positive pulses
if (USE_TIGER_START)

config.dc_offset[0] = TIMETAGGER4_DC_OFFSET_P_LVCMOS_18;
else // user 1input expect NIM signal

config.dc_offset[0] = TIMETAGGER4_DC_OFFSET_N_NIM;

// start group on falling edges on the start channel 0
config.trigger [TIMETAGGER4_TRIGGER_S].falling = USE_TIGER_START 2 0 : 1;
config.trigger [TIMETAGGER4_TRIGGER_S].rising = USE_TIGER_START ? 1 : 0;

} else {

for

// Auto trigger is used as a start signal
config.tdc_mode = TIMETAGGER4_TDC_MODE_CONTINUOUS;

(int i = 1; i < TDC4_TIGER_COUNT; 1i++) {

config.tiger_block[i].enable = USE_TIGER_STOPS ? 1 : 0;
config.tiger_block[i].start = i * 100;

config.tiger_block[i].stop = config.tiger_block[i].start + pulse_width;
config.tiger_block[i].negate = 0;

config.tiger_block[i].retrigger = 0;

config.tiger_block[i].extend = 0;
config.tiger_block[i].enable_lemo_output = USE_TIGER_STOPS ? 1 : 0;
config.tiger_block[i].sources = TIMETAGGER4_TRIGGER_SOURCE_AUTO;

if (USE_TIGER_STOPS)

config.dc_offset[i] = TIMETAGGER4_DC_OFFSET_P_LVCMOS_18;
else // user 1input expect NIM signal

config.dc_offset[i] = TIMETAGGER4_DC_OFFSET_N_NIM;

// this s not related to the tigers, but uses the same indexing (0 is start)
// optionally increase input delay by 10 x 200 ps for each channel on new TT

// config.delay_config[i].delay = i * 10;

// write configuration to board
return timetagger4_configure(device, &config);

cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206

30

void print_device_information(timetagger4_devicex device,
timetagger4_static_infox si,
timetagger4_param_infox pi) {
// print board information
printf("Board Serial ¢ %d.%d\n",
si->board_serial >> 24, si->board_serial & Oxffffff);
printf("Board Configuration : %s\n",
timetagger4_get_device_name(device));

printf("Board Revision : %d\n",
si->board_revision);

printf("Firmware Revision ¢ %d.%d\n",
si->firmware_revision, si->subversion_revision);

printf("Driver Revision ¢ %d.%d.%d\n",

((si->driver_revision >> 16) & 255),
((si->driver_revision >> 8) & 255),
(si->driver_revision & 255));
printf("Driver SVN Revision : %d\n",
si->driver_build_revision);
printf("\nTDC binsize : %0.2f ps\n",
pi->binsize);

double last_abs_ts_on_a = 0;
int64_t last_group_abs_time = 0;

int64_t processPacket(volatile crono_packetx p,
bool print,
timetagger4_static_infox si,
timetagger4_param_infox pi){
// do something with the data, e.g. calculate current rate
int64_t group_abs_time = p->timestamp;
if (!USE_CONTINUOUS_MODE) {

// group timestamp increments at binsize, but we see only a fraction of

// the packets (every update_count)
double rate = 1el2 / (
(double) (group_abs_time - last_group_abs_time)
* pi->packet_binsize
)5
if (print && last_group_abs_time > 0) {
printf("\r%.6f kHz", rate / 1000.0);
// ...or print hits (not a good idea at high data rates,

printf("Card %d - flags %d - length %d - type %d - TS %llu\n",

p->card, p->flags, p->length, p->type, p->timestamp);
}

last_group_abs_time = group_abs_time;

int hit_count = 2 * (p->length);

// Two hits fit into every 64 bit word. The second in the last word might

// be empty

// This flag tells us, whether the number of hits in the packet 1is odd

if ((p->flags & TIMETAGGER4_PACKET_FLAG_ODD_HITS) != 0)
hit_count -= 1;

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

207 uint32_t* packet_data = (uint32_tx) (p->data);

208 uint32_t rollover_count = 0;

209 uint64_t rollover_period_bins = si->rollover_period;

210 for (int i = 0; i < hit_count; 1i++)

211 {

212 uint32_t hit = packet_datal[i];

213 uint32_t channel = hit & 0xf;

214 // extract hit flags

215 uint32_t flags = hit >> 4 & 0Oxf;

216

217

218 if ((flags & TIMETAGGER4_HIT_FLAG_TIME_OVERFLOW) != 0) {

219 // this 1is a overflow of the 23/24 bit counter)

220 rollover_count++;

221 }

222 else {

223 // extract channel number (A-D)

224 char channel_letter = 65 + channel;

225

226 // extract hit timestamp

227 uint32_t ts_offset = hit >> 8 & Oxffffff;

228

229 // Convert timestamp to ns, this is relative to the start of

230 // the group

231 double ts_offset_ns =

232 (ts_offset + rollover_count * rollover_period_bins)

233 *x pi->binsize / 1000.0;

234

235 if (USE_CONTINUOUS_MODE) {

236 if (channel == 0) {

237 // compute the absolute time by adding the group time 1in ns

238 double abs_ts_on_a =

239 (group_abs_time x pi->packet_binsize) / 1000

240 + ts_offset_ns;

241 double diff = abs_ts_on_a - last_abs_ts_on_a;

242 if (last_abs_ts_on_a > 0 && print) {

243 printf("Time difference between hits on A %.1f ns\n",

244 diff);

245 }

246 last_abs_ts_on_a = abs_ts_on_a;

247 }

248 }

249 else {

250 if (print)

251 printf("Hit on channel %c - flags %d - offset %u (raw) / %.1f ns¢
\n",

252 channel_letter, flags, ts_offset, ts_offset_ns);

253 }

254 }

255 }

256 return group_abs_time;

257}

258
259 dint main(int argc, charx argv[]) {
260 printf("cronologic timetagger4_user_guide_example using driver: %s\n",

31| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

261
262
263
264

265

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

287

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

32

cronologic GmbH & Co. KG

timetagger4_get_driver_revision_str());

timetagger4_devicex device = initialize_timetagger(8 * 1024 * 1024, 0,

if (device == nullptr) {
exit(1l);
}
int status = configure_timetagger (device);
if (status != CRONO_OK) {
printf("Could not configure TimeTagger4: %s",
timetagger4_get_last_error_message(device));
timetagger4_close(device);
return status;
}
timetagger4_static_info static_info;
timetagger4_get_static_info(device, &static_info);

timetagger4_param_info parinfo;
timetagger4_get_param_info(device, &parinfo);

print_device_information(device, &static_info, &parinfo);

// configure readout behaviour

timetagger4_read_in read_config;

// automatically acknowledge all data as processed
// on the next call to timetagger4_read()

// old packet pointers are invalid after calling timetagger4_read()

read_config.acknowledge_last_read = 1;

// structure with packet pointers for read data
timetagger4_read_out read_data;

// start data capture
status = timetagger4_start_capture(device);
if (status != CRONO_OK) {
printf("Could not start capturing %s",
timetagger4_get_last_error_message(device));
timetagger4_close(device);
return status;

// start timing generator
timetagger4_start_tiger(device);

// some book keeping

int packet_count = 0;

int empty_packets = 0;

int packets_with_errors = 0;
bool last_read_no_data = false;

int64_t group_abs_time = 0;
int64_t group_abs_time_old = 0;
int update_count = 100;

printf("Reading packets:\n");
bool no_data_printed = false;
// read 10000 packets

0);

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

316 while (packet_count < 10000)

317 {

318 // get pointers to acquired packets

319 status = timetagger4_read(device, &read_config, &read_data);
320 if (status != CRONO_OK) {

321 std::this_thread::sleep_for(std::chrono::milliseconds(10));
322 // to avoid a lot of lines with no data

323 if (!no_data_printed) {

324 printf(" - No data! -\n");

325 no_data_printed = true;

326 }

327 }

328 else

329 {

330 // iterate over all packets received with the last read
331 volatile crono_packetx p = read_data.first_packet;

332 while (p <= read_data.last_packet)

333 {

334 // printf is slow, so this demo only processes every nth packet
335 // your application would of course collect every packet
336 bool print = packet_count % update_count == 0;

337

338 processPacket(p, print, &static_info, &parinfo);

339 no_data_printed = false;

340 p = crono_next_packet(p);

341 packet_count++;

342 }

343 }

344 }

345

346 // shut down packet generation and DMA transfers

347 timetagger4_stop_capture(device);

348

349 // deactivate timetagger4

350 timetagger4_close(device);

351 return 0;

352}

33| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

34

8 Technical Data

Each board is tested against the values listed in the columns “Min” and “Max". “Typical” is the mean
value of the first 10 boards produced or a value that is set by design.

8.1 TDC Characteristics

8.1.1 TDC measurement Characteristics for Gen 1 TimeTagger4

Symbol | Parameter Min | Typical | Max Units
INL Integral non-linearity 0.5 bins

DNL | Differential non-linearity 0.2 bins
tpata | Data format bin size 500 ps
tRes Double pulse resolution for -1G 1000 ps
tRes2 Double pulse resolution for -2G 500 ps
Atg,« | Interval between consecutive starts 4 ns
trange | Measurement range using hits only 8.368 ms

tegtended | EXtended range using rollovers 2.147 s

fReadout | Readout rate 48 | MHits/s

cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

8.1.2 TDC measurement Characteristics for Gen 2 TimeTagger4

Symbol Parameter Min | Typical | Max Units
INL Integral non-linearity 0.5 bins
DNL Differential non-linearity

-1.25G to -5G 0.01 tData
-10G 0.3
tData Data format bin size 100 ps
touant Quantisation
-1.25G 800 ps
-2.5G 400
-5G 200
-10G 100
tRes Double pulse resolution 2 touant
tRange Measurement range using hits only 1.677 ms
tegtended Extended range using rollovers 0.429 s

fstart burst Burst rate for up to 4096 starts

-1.25G 0.625 | GHz
-2.5G 1.25
-5G 2.5
-10G 5
fstart sust Sustained rate of starts 18 MHz
fstop burst Burst rate for up to 3900 stops
-1.25G 0.625 | GHits/s
-2.5G 1.25
-5G 2.5
-10G 5
fReadout,sm@e Readout rate per channel 40 MHits/s
freadoutall | Readout rate of all channels 60 MHits/s
8.1.3 Time Base
Symbol | Parameter Min | Typical | Max | Units
AT Temperature stability 20°C to 70 °C 25 | ppb
F Initial calibration 1 ppm
AF/F, | Aging first year 2 | ppm
AF/Fio | Aging 10 years 8 ppm

35| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

8.2.1 Power Supply

Symbol | Parameter Min | Typical | Max | Units
Piotal | Total power consumption 27 wW
VCC;5 | PCle 3.3V rail power supply voltage 3.1 3.3 3.5 \Y%
l33 PCle 3.3V rail input current 1.8 A
VCC,, | PCle 12V rail power supply voltage 11.1 120 | 129 \
l1o PCle 12V rail input current 1.9 A
VCC, | PCle 3.3V, rail power supply voltage 3.3 \%
| ux PCle 3.3V, rail input current 0 A

8.2.2 TDC Inputs

The TimeTagger4's inputs are single-ended AC-coupled with 50 Q termination.

Symbol | Parameter Min Typical Max Units
Vgase Input Baseline 0 5 \
Vihreshold | Trigger Level Vgase - 1.32 Vgaso + 1.18 |V
tpulse Pulse Length 2 5 200 ns
tRise Pulse Edge 20% to 80% 10 ns
tea Pulse Edge 80% to 20% 10 ns
Zp Input Impedance 50 Q
Iterm Termination Current -50 -20 50 mA

All'inputs are AC-coupled. The inputs have very high input bandwidth requirements and therefore
there are no circuits that provide over-voltage protection for these signals. Any voltage on the inputs
above 5V or below -5V relative to the voltage of the slot cover can result in permanent damage to the
board.

Keep in mind, that the input baseline Vg_, is affected by the ratio of pulse length tp | to average
pulse distance (for continuous signals the term is called duty cycle).

Make sure not to drive the inputs when the connector is configured as a TiGer output.

See Section 3.5.

36| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

8.3 Information Required by DIN EN 61010-1

8.3.1 Manufacturer

The TimeTagger4 is a product of:

cronologic GmbH & Co. KG
JahnstraBe 49
60318 Frankfurt

Germany HRA 42869 beim Amtsgericht Frankfurt/M

VAT-ID: DE235184378
PCl Vendor ID: 0x1A13

8.3.2 Intended Use and System Integration

The devices are not ready to use as delivered by cronologic. It requires the development of special-
ized software to fulfill the application of the end-user. The device is provided to system integrators to
be built into measurement systems that are distributed to end users. These systems usually consist
of the TimeTagger4, a main board, a case, application software and possibly additional electronics to
attach the system to some type of detector. They might also be integrated with the detector.

The TimeTagger4 is designed to comply with DIN EN 61326-1 when operated on a PCle compliant
main board housed in a properly shielded enclosure. When operated in a closed standard compliant
enclosure the device does not pose any hazards as defined by EN 61010-1.

Radiated emissions, noise immunity, and safety highly depend on the quality of the enclosure. It is the
responsibility of the system integrator to ensure that the assembled system is compliant to applica-
ble standards of the country that the system is operated in, especially with regards to user safety and
electromagnetic interference.

When handling the board, adequate measures must be taken to protect the circuits against elec-
trostatic discharge (ESD). All power supplied to the system must be turned off before installing the
board.

8.3.3 Environmental Conditions for Storage

The board shall be stored between operation under the following conditions:

Symbol | Parameter Min | Typical | Max | Units
Taore | @ambienttemperature -30 60 °C
RHiore | relative humidity at 31°C noncondensing 10 70 %

37| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

8.3.4 Environmental Conditions for Operation

The board is designed to be operated under the following conditions:

Symbol | Parameter Min | Typical | Max | Units
Toper | @ambient temperature 5 40 °C
RHoper | relative humidity at 31°C 20 75 %

WARNING: Do not connect any DC-coupled inputs to a channel while the TiGer of that channel is con-
figured as an output (see Section 3.5). Doing so could do permanent damage to the TimeTagger4
and the external hardware.

8.3.5 Cooling

The TimeTagger4 in its base configuration has passive cooling that requires a certain amount of
air-flow. If the case design can't provide enough air-flow to the board, a slot cooler like Zalman ZM-
SC100 can be placed next to the board. Active cooling is also available as an option for the board.

8.3.6 Recycling

cronologic is registered with the “Stiftung Elektro-Altgerate Register” as a manufacturer of electronic
systems with Registration ID DE 77895%09.

The TimeTagger4 belongs to category 6, “Kleine Gerate der Informations- und Telekommunikation-
stechnik fir die ausschlieBliche Nutzung in anderen als privaten Haushalten”. Devices sold before
2018 belong to category 9, “Uberwachungs und Kontrollinstrumente fiir ausschlieBlich gewerbliche
Nutzung”. The last owner of a TimeTagger4 must recycle it, treat the board in compliance with §11
and §12 of the German ElektroG, or return it to the manufacturer’s address listed on Page 37.

38| cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

39

9@ Revision History

User Guide 1.8.11 as of 2023-11-29
cronologic GmbH & Co. KG
JahnstraBBe 49

60318 Frankfurt am Main

Germany

9.1 Firmware Gen 1

Revision Date Comments
extended standard range of measurement to 24 bits
0.1187 | 2023-05-25 | fixed wrong polarity flag bug
internal optimizations
0.1132 | 2021-12-09 | Fixed possible register read issues
0.1118 | 2021-06-23 | Fixed register write issues
0.983 | 2019-03-15 | Internal optimizations
0.971 | 2019-02-19 | Hit sorting and packet generation issues fixed

9.2 Firmware Gen 2

Revision

Date

Comments

0.23180

2023-06-29

Initial release

cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

40

Revision Date Comments
190 | 2023-07-10 added quant|z.at|(.)n to timetagger4_param_info structure
Code refactorization
183 2023-06-07 Minor bug fixes
o Code refactorization
1.8.2 2023-05-17 | Added bounds and checks for various parameters
1.8.1 2023-05-09 | Renamed autotrigger mode to continuous mode
1.8.0 | 2023-05-05 | Added configurable input delay
Board Revision 7 support
1.7.0] 2023-04-18 TimeTagger4 : added autotrigger mode
kernel driver v1.4.2 for xTDC4 only
145 2022-10-17 (fixes crash on Windows for Thunderbolt hot-plug)
1.4.4 | 2022-06-27 | kernel driver v1.4.1
Firmware updated
1.4.2 | 2021-07-28 | ReadoutGUI added/updated
User guide example added/updated
1.4.1 2019-11-11 | x64 32 mode issues fixed
1.4.0 2019-06-04 | Improved Windows 10 support
1.3.0 2019-01-23 | Added Windows 10 support

cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

41

Revision Date Comments

Reformatting
Added latency between signal and Tiger output to Section 3.5
TimeTagger4: Updated table in Section 8.1.2

1.8.11 | 2023-11-29 | TimeTagger4: Clarifications in Features-list
TimeTagger4: Added ignore_empty_packets APl documentation
xHPTDC8: Added default values for manager and configuration structs
xHPTDCS8: Fixed number of boards that can be synchronized from 8 to 6

1810 | 2023-07-28 Changep! ex’Fended range values to 0.429s and 2.147 s, respectively.
API clarifications.

1.8.9 | 2023-07-10 | TimeTagger4 Userguide rework

1.8.8 2023-03-15 | new TimeTagger4 variants -1.25G to -10G added

1.8.7 2022-11-24 | Firmware revision notes updated
Spelling and grammar corrections

186 | 2022-11-23 new example source code for xHPTDC8

1.8.5 2021-12-17 | Clarifications related to TimeTagger4 configuration.

1.8.4 | 2021-12-08 | Updated grouping structure in xHPTDC8 API

1.8.3 2021-07-28 | Updated firmware revision history
Added software trigger and _SYNC trigger sources for xHPTDC8
Corrected 3.3V power requirement for xHPTDC8

182 2021-04-23 Changed types with fixed bit width to stdint.h for xHPTDC8
Added user flash functions for xHPTDC8

1.8.1 2021-04-09 | Many corrections and updates to the xHPTDC8 API

1.8.0 | 2021-03-22 | Added xHPTDCS8 User Guide
Combined User Guide for -1G and -2G
Added characteristics for INL, DNL and Time Base

170 | 2021-02-04 Reordered sgcﬂons for clarity o
Error corrections for rollovers, binsize and range
Added figure 3.2 (TiGer matrix)
Corrected board revision

1.3.0 2019-06-05 | API clarifications

cronologic GmbH & Co. KG

TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

Erratum

We found undesired behaviour for Gen 1 devices of the TimeTagger4.

If there are three or more edges close together (within 6.6 ns) and the user did only enable rising or
falling edges but not both, some of the edges are reported with the wrong polarity.

If your configuration enables both edges all output data is correct. If you only need one type of edge
(rising or falling) there are three simple workarounds:

a) update the Firmware of your Gen 1 device to svn1187 or later.

b) enable both edges.
All output words will be correct and your software can ignore all data that doesn't have the de-
sired polarity.

c) enable only the desired edge polarity

Ignore the polarity flag in the output data. You can trust that only edges with the desired polar-
ity are output, even if the flag in the data word states the wrong polarity.

42 cronologic GmbH & Co. KG TimeTagger4 - User Guide, Rev. 1.8.11

https://www.cronologic.de

	Introduction
	Features
	Applications

	Hardware
	Installing the Board
	TimeTagger4 Inputs and Connectors

	TimeTagger4 Functionality
	Grouping and Events
	Auto-Triggering Function Generator
	Continuous Mode
	Configurable Input Delay
	Timing Generator (TiGer)

	Driver Programming API
	Constants
	Driver Information
	Initialization
	Structure timetagger4_init_parameters

	Status Information
	Functions for Information Retrieval
	Structure timetagger4_static_info
	Structure timetagger4_param_info
	Structure timetagger4_fast_info

	Configuration
	Structure timetagger4_configuration
	Structure timetagger4_trigger
	Structure timetagger4_tiger_block
	Structure timetagger4_channel
	Structure timetagger4_delay_config

	Run Time Control
	Run Time Control
	Readout
	Input Structure timetagger4_read_in
	Input Structure timetagger4_read_out

	Output Data Format
	Output Structure crono_packet

	Code Example
	Technical Data
	TDC Characteristics
	TDC measurement Characteristics for Gen 1 TimeTagger4
	TDC measurement Characteristics for Gen 2 TimeTagger4
	Time Base

	Electrical Characteristics
	Power Supply
	TDC Inputs

	Information Required by DIN EN 61010-1
	Manufacturer
	Intended Use and System Integration
	Environmental Conditions for Storage
	Environmental Conditions for Operation
	Cooling
	Recycling

	Revision History
	Firmware Gen 1
	Firmware Gen 2
	Driver & Applications
	User Guide

	Erratum

