Cronologic

X -PCle
User Guide

XTIDC4-PCle

www.cronologic.de

2

Contents

1 Introduction 4
1.1 Features L e 4
1.2 Applications e 5

2 Hardware 6
2.1 Installingthe Board e 6
2.2 xTDC4 Inputsand ConnNectors« v v v i v vttt e e e e 6

3 xTDC4 Functionality 9
3.1 Handling of Difficult Hits 9
3.2 Groupingand Events L 9
3.3 Auto-Triggering Function Generator e 10
3.4 Timing Generator (TiGer) o o i e e e e 10

4 Driver Programming API 12
4.1 Constants oo e e e e 12
4.2 DriveriInformation L L e e 12
4.3 Initialization L L e 13

4.3.1 Structure xtdcd_init_parameters 13
4.4 Status Information L e 14
4.4.1 Functions for Information Retrieval o L. 14
4.4.2 Structure xtdcd_static_info 15
4.4.3 Structure xtdcd_param_info 16
4.4.4 Structure xtdcd_fast_info L 17
45 Configuration. o L e 17
4.5.1 Structure xtdcd_configuration 18
4.5.2 Structure xtdcd_trigger e e 20
4.5.3 Structure xtdcd_tiger_block 20
4.5.4 Structure xtdcd_channel L 21

5 Run Time Control 23

5.1 RunTime Control 23

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

5.2 Readout 23

5.2.1 InputStructure xtdcd_read_in 24

5.2.2 InputStructure xtdcd_read_out L Lo 24

6 Output Data Format 25
6.1 Output Structure crono_packet 25

7 Code Example 27
8 Technical Data 32
8.1 TDC CharacteristiCs v v i i i e e e e e 32
8.1.1 TDC measurement Characteristics 32

8.1.2 TimeBase. e 32

8.2 Electrical Characteristics 33
8.2.1 PowerSupply. . . o 33

8.2.2 TDCINPULS . . . o o e e e e 33

8.3 Information Required by DINEN 61010-1. o o i 34
8.3.1 Manufacturer e 34

8.3.2 Intended Use and System Integration L. 34

8.3.3 Environmental Conditions for Storage o oL 34

8.3.4 Environmental Conditions for Operation 35

8.3.5 Cooling o e 35

8.3.6 Recycling e 35

9 Revision History 36
9.1 Firmware e e 36
9.2 Driver & Applications e 37
9.3 UserGuide e 38
Erratum 38

3 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

1 Introduction

The xTDC4 is a common-start high resolution time-to-digital converter. Timestamps of leading or
trailing edges of digital pulses are recorded. The xTDC4 produces a stream of output packets, each
containing data from a single start event. The relative timestamps of all stop pulses that occur within a
configurable range are grouped into one packet.

1.1 Features

® 4-channel common-start TDC with 8 ps resolution
e Standard Range: 218 ps (24-bit timestamp)

e Extended Range: 13.975ms

® Binsize: 13 ps

® Double-pulse resolution for best results: 5ns

® Double-pulse resolution without lost hits: 1.7 ns
e Dead time between groups: none

e Minimum interval between starts: 250 ns

e LO FIFO: 15 words/channel

e L1 FIFO: 512 words/channel

e L2 FIFO: 8000 words

e PCle 1.1 x1 with 200 MB/s throughput

4 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

5

1.2 Applications

The xTDC4 can be used in all time measurement applications where a common start setup with four
channels is sufficient. For alternatives with more channels or more flexible grouping check our TDC

website www.cronologic.de.

The xTDC4 is well suited for the following applications:

e time of flight mass spectrometers (TOF-MS)

e LIDAR down to 2 mm resolution

® reciprocal counters

e coincidence measurements

® quantum communication

* time-correlated single photon counting (TCSPC)
® synchronization of atomic clocks

¢ fluorescence lifetime imaging microscopy (FLIM)

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de/produkte/products-overview#tdcdata
https://www.cronologic.de

6

2 Hardware

2.1 Installing the Board

The xTDC4 board can be installed in any PCle-CEM slot with x1 or more lanes. Make sure the PC is
powered off and the main power connector is disconnected while installing the board.

2.2 XIDC4 Inputs and Connectors

Figure 2.1 shows the location of the inputs on the slot bracket.

o006 o ;
Stop AD =3

Figure 2.1 Input connectors of the xTDC4 on the PCle bracket.

Lemo 00 connector
j I +

>

™

© (@)
<
a

dc_offset[i]

Figure 2.2 Input circuit for each of the input channels.

LEMO-00 connectors are used for input connection. The inputs are AC-coupled and have an
impedance of 50 Q. A schematic of the input circuit is shown in Figure 2.2. The digital threshold for any
input can be adjusted to comply with a multitude of single-ended signaling standards. The threshold
can also be used to configure the input for either positive or negative pulses.

The connectors can also be used as outputs. DC-coupled output pulses for automatic internal trigger-
ing and control of external devices can be generated using the TiGer timing pattern generator. See
Section 3.4 for details on the TiGer. Furthermore, for Gen 1 boards three inter-board connectors can
be found near the top edge of the xTDC4 board, as displayed in Figure 2.3. Connector J25 is reserved

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

Figure 2.3 Schematic view of an xTDC4 Gen 1 board showing
the inter-board connectors.

for future use. The pinout of connector J12 is shown in Table 2.1 and the pinout of connector Jé is
depicted in Table 2.2. Gen 2 boards do not posses these three connectors.

7 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

8

cronologic GmbH & Co. KG

Pin Name
1,2 GND
3,4 external CLK in N, external CLK in P
56 GND
7,8 reserved/NC
9,10 GND
11,12 reserved/NC
13,14 GND
15,16 reserved/NC
17,18 GND
19,20 reserved/NC
21,22 GND
23,24 reserved/NC
25,26 GND
27,28 reserved/NC
29,30 GND
31,32 reserved/NC
33,34 GND

Table 2.1 Pinout of connector J12.

Table 2.2 Pinout of connector Jé6.

Pin Name
1 +3.3V
2-9 | reserved/NC
10 GND

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

9

3 XIDC4 Functionality

The xTDC4 is a “classic” common start time-to-digital converter.

It records the time difference between leading or trailing edges on the start input and the stop inputs.
Each stop channel A-D can be enabled individually. The standard deviation of the timestamps is approx.
8 ps. The timestamps are recorded in integer multiples of a bin size of 5000/(3 x 128) = 13.02083 ps.
The data acquisition can be limited to rising or falling signal transitions.

The maximum trigger rate on the start channel is 4 MHz.

3.1 Handling of Difficult Hits

Transitions of the input signals are called hits. To measure all hits with the maximum resolution the
hits must fulfill all criteria set forth in this document. However, the xTDC4does include mechanisms to
provide as much information as possible for hits that fall out of these specs.

To reliably detect hits the signal has to be stable for at least 900 ps before and after the edge that is
to be measured. Pulses as short as 250 ps are usually detected at full resolution but have a significant
chance to be assigned to the wrong group or appear out of order. For these hits bit 7 in the data word
is set. See Section 6.1 for more information on the data format.

Between multiple hits on a stop channel a dead time of approximately 5 ns is required for full resolution.
Hits that are closer together will only be reported with a resolution of 5/6 ns = 833.3 ps. For these hits
both bits 6 and 7 are set.

Data is copied from the 15-entry LO FIFO to the larger downstream FIFOs at a rate of about 12 MHz per
channel. If the LO FIFO overflows the high resolution measurement of some hits will be discarded. In
this case a measurement from an alternative TDC will be used that has a resolution of about 150 ps. For
these hits bit 6 in the data word will be set

3.2 Grouping and Events

In typical applications a start hit is followed by a multitude of stop hits. If grouping is enabled, the hits
recorded are managed in groups (which are called “events” in some applications).

Figure 3.1 shows a corresponding timing diagram. The user can define the range of a group, i.e., the
time window within which hits on the stop channels are recorded. Hits occurring outside of that time
window are discarded.

Different ranges can be set for each of the stop channels by setting corresponding values for
channel[i].start and channel[i].stop values.

The values need to be set as multiples of the bin size and must not be negative.

0 < start < stop < 210 — 1

If a second start is recorded within the range of a group, the current group is finished and a new group
is started. Consecutive stops will be assigned to the new group (as long as they are within the group
range).

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

10

Start |

start
: stop

Figure 3.1 Acquired hits are merged to groups as explained in
the text.

3.3 Auto-Triggering Function Generator

Some applications require internal periodic or random triggering. The xTDC4 function generator
provides this functionality.

The delay between two trigger pulses of this trigger generator is the sum of two components: A fixed
value M and a pseudo-random value with a range given by the exponent N.

The period is
T=M+[1.2N] -1

clock cycles with a duration of 4 ns per cycle.

The trigger can be used as a source for the TiGer unit (see Section 3.4).

3.4 Timing Generator (TiGer)

Each digital LEMO-00 input can be used as an LVCMOS trigger output. The TiGer functionality can be
configured independently for each connector. See Section 4.5.3 for a full description of the configura-
tion options.

Figure 3.2 shows how the TiGer blocks are connected. They can be triggered by an OR of an arbitrary
combination of inputs, including the auto-trigger . Each TiGer can drive its output to its corresponding
LEMO connector. This turns the connector into an output.

The TiGer is DC coupled to the connector. Connected hardware must not drive any signals to connec-
tors used as outputs, as doing so could damage both the xTDC4 and the external hardware. Pulses
that are short enough for the input AC coupling are available as input signals to the xTDC4. This can
be used to measure exact time differences between the generated output signals and input signals on
other channels.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

. |

| enable_lemo_output
c
l enable_lemo_output
B
| enable_lemo_output
A
| enable_lemo_output
s
enable_lemo_output
threshold threshold threshold threshold threshold
trigger || trigger H trigger || trigger H trigger || 1 || auto
negate
[rigers |) D
negate
[Tiger A | D—
negate
S~
[Tigers |)
negate
[Tigerc |
negate
[Tiger D |

Figure 3.2 TiGer blocks can generate outputs that are also
available on inputs.

11 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

12

4 Driver Programming API

The APl is a DLL with C linkage.

The functions provided by the driver are declared in xTDC4_1interface.h which must be included
by your source code. You must tell your compiler to link with the file xTDC4_driver_64.lib. When
running your program the dynamic link library containing the actual driver code must reside in the same
directory as your executable or be in a directory included in the PATH variable. For Linux it is provided
only as a static library 1ibxtdc4_driver.a The file for the DLL is called xTDC4_driver_64.d11.

All these files are provided with the driver installer that can be downloaded from the product website
www.cronologic.de. By default, the installer will place the files into the directory C: \Program Files)\
cronologic\xTDC4\driver. A coding example can be found on
github.com/cronologic-de/xtdc_babel.

4.1 Constants

#define XTDC4_TDC_CHANNEL_COUNT 4
The number of TDC input channels.

#define XTDC4_TIGER_COUNT 5
The number of timing generators. One for each TDC input and one for the start input.

#define XTDC4_TRIGGER_COUNT 16
The number of potential trigger sources for the timing generators. One for each TDC input, one
for the Start input plus some specials. See Section 4.5.3 for details.

#define XTDC4_OK 0
Error codes are set by the API functions to this value if there has been no error. Other error codes
can be found in xTDC4_interface.h

4.2 Driver Information
Even if there is no board present the driver revision can be queried using these functions.

int xtdc4_get_driver_revision()
Returns the driver version, same format as xtdc4_static_info.driver_revision. This func-
tion does not require an xTDC4 board to be present.

const char* xtdc4_get_driver_revision_str()
Returns the driver version including SVN build revision as a string.

int xtdc4_count_devices(int xerror_code, char *xerror_message)
Returns the number of boards present in the system that are supported by this driver. Pointers
to an error code and message variable have to be provided. If error_code does not equal
#define XTDC4_OK = 0,the error message will contain what went wrong. E.g., crono kernel
was not properly installed.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de
https://github.com/cronologic-de/xtdc_babel/tree/main/timetagger4_user_guide_example
https://www.cronologic.de

4.3 Initialization

The card must be initialized first before reading data. Normally the process is to get the default init
parameters and change some values. E.g., choose one of multiple cards by the index or use a larger

buffer.

int xtdc4_get_default_init_parameters(xtdc4_init_parameters *init)
Sets up the standard parameters. Gets a set of default parameters for xtdc4_init(). This must
always be used to initialize the xtdc4_1init_parameters structure before modifying it and
passing it to xtdc4_init.

xtdc4_device xtdc4_init(xtdc4_1init_parameters *params, int *error_code,
char xxerror_message)
Opens and initializes the xTDC4 board with the given index.

error_code must point to an integer where the driver can write the error code.

error_message must point to a pointer to char. The driver will allocate a buffer for zero-termina-
ted error message and store the address of the buffer in the location provided by the user.

The parameter params is a pointer to a structure of type xtdc4_init_parameters that must be
completely initialized by get_default_init_parameters().

int xtdc4_close(xtdc4_device *device)
Closes the devices, releasing all resources.

4.3.1 Structure xtdc4 _init_parameters

int version
The version number. Must be setto XTDC4_API_VERSION.

int card_index
The index in the list of XTDC4 boards that should be initialized.

There might be multiple boards in the system that are handled by this driver as reported by
xtdc4_count_devices. This index selects one of them. Boards are enumerated depending on
the PCle slot. The lower the bus number and the lower the slot number the lower the card index.

int board_did
The global index in all cronologic devices.

This 8-bit number is filled into each packet created by the board and is useful if data streams
of multiple boards will be merged. If only xTDC4 cards are used this number can be set to
the card_index. If boards of different types that use a compatible data format are used in a
system each board should get a unique id. Can be changed with int xtdc4_set_board_id
(xtdc4_device xdevice, int board_id).

uint64_t buffer_size[8]
The minimum size of the DMA buffer.
If set to 0 the default size of 16 MByte is used. For the xTDC4 only the first entry is used.

int buffer_type
The type of buffer. Must be set to 0.

#define XTDC4_BUFFER_ALLOCATE ©

13 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

14

#define XTDC4_BUFFER_USE_PHYSICAL 1 //unsupported

uint64_t buffer_address
This is set by xtdc4_1init() to the start address of the reserved memory.

The buffers will be allocated with the sizes given above. Make sure that the memory is large
enough.

int variant0
Set to 0. Can be used to activate future device variants such as different base frequencies.

int device_type
A constant for the different devices of cronologic CRONO_DEVICE_x.

Initialized by xtdc4_get_default_init_parameters(). This value is identical to the PClI
Device ID. Must be left unchanged.

#define CRONO_DEVICE_HPTDC Ox1
#define CRONO_DEVICE_NDIGO5G 0Ox2
#define CRONO_DEVICE_NDIGO250M Ox4
#define CRONO_DEVICE_xTDC4 Ox6
#define CRONO_DEVICE_TIMETAGGER4 0x8
#define CRONO_DEVICE_XHPTDCS8 oxC

#define CRONO_DEVICE_NDIGO6 OxD

int dma_read_delay
The update delay of the write pointer after a packet has been sent over PCle. Specified in multi-
ples of 16 ns. Should not be changed by the user.

int use_ext_clock
If setto 1, use external 10 MHz reference. If set to 0, use internal reference.

4.4 Status Information

4.4.1 Functions for Information Retrieval

The driver provides functions to retrieve detailed information on the board type, its configuration,
settings, and state. The information is split according to its scope and the computational requirements
to query the information from the board.

int xtdc4_get_device_type(xtdc4_device *device)
Returns the type of the device as CRONO_DEVICE_XTDC4.

const char* xtdc4_get_last_error_message(xtdc4_device xdevice)
Returns most recent error message.

int xtdc4_get_fast_info(xtdc4_device xdevice, xtdc4_fast_info xinfo)
Returns fast dynamic information.

This call gets a structure that contains dynamic information that can be obtained within a few
microseconds.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

15

int xtdc4_get_param_info(xtdc4_device xdevice, xtdc4_param_info *info)
Returns configuration changes.

Gets a structure that contains information that changes indirectly due to configuration changes.
int xtdc4_get_static_info(xtdc4_device *device, xtdc4_static_info xinfo)
Contains static information.

Gets a structure that contains information about the board that does not change during run time.

4.4.2 Structure xtdc4_static_info

This structure contains information about the board that does not change during run time. It is provided
by the function xtdc4_get_static_info().

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment
can be larger than one to match driver version numbers or similar.

int board_1id
ID of the board.

int driver_revision
Encoded version number for the driver.

The lower three bytes contain a triple-level hierarchy of version numbers, e.g., 9x010103 en-
codes version 1.1.3.

The version adheres to the Semantic Versioning scheme as defined at https://semver.org. A
change in the first digit generally requires a recompilation of user applications. Changes in the
second digit denote significant improvements or changes that don't break compatibility and the
third digit increments with minor bug fixes and similar updates that do not affect the API.

int driver_build_revision
Build number of the driver according to cronologic’s internal versioning system.

int firmware_revision
Revision number of the FPGA configuration.

int board_revision
Board revision number.

The board revision number can be read from a register. It is a four-bit number that changes when
the schematic of the board is changed. This should match the revision number printed on the
board.

int board_configuration
Describes the schematic configuration of the board.
The same board schematic can be populated in multiple variants. This is an 8-bit code that can be
read from a register.

int subversion_revision
Subversion revision id of the FPGA configuration source code.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://semver.org
https://www.cronologic.de

16

int chip_id
16 bit factory ID of the TDC chip.
int board_serial

Serial number.

Year and running number are concatenated in 8.24 format. The number is identical to the one
printed on the silvery sticker on the board.

unsigned int flash_serial_high
unsigned int flash_serial_low
64-bit manufacturer serial number of the flash chip

crono_bool_t flash_valid
If not 0, the driver found valid calibration data in the flash on the board and is using it. This value
is not applicable for the xTDCA4.

char calibration_date[20]
DIN EN ISO 8601 string YYYY-MM-DD HH:MM of the time when the card was calibrated.

char bitstream_date[20]
DIN EN ISO 8601 string YYYY-MM-DD HH:MM of the time when the bitstream on the card was

created.

4.4.3 Structure xtdc4_param_info

This structure contains configuration changes provided by xtdc4_get_param_info().

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment
can be larger than one to match driver version numbers or similar.

double binsize
Bin size (in ps) of the measured TDC data.

int board_1id
Board ID.
The board uses this ID to identify itself in the output data stream. The ID takes values between 0
and 255.
int channels
Number of TDC channels of the board.
Fixed at 4.
int channel_mask
Bit assignment of each enabled input channel.
Bit® < n < 4 is set if channel n is enabled.

int64_t total_buffer
The total amount of DMA buffer in bytes.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

double packet_binsize
For xTDC4 this is 1666.6 ps

double quantisation
Quantisation or measurement resolution. For the xTDC4 this is 13.0208 ps

4.4.4 Structure xtdc4 _fast_info

int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment
can be larger than one to match driver version numbers or similar.

int tdc_rpm
Speed of the TDC fan in rounds per minute. Reports 0 if no fan is present.

int fpga_rpm
Speed of the FPGA fan in rounds per minute. Reports 0 if no fan is present.

int alerts
Alert bits from the temperature sensor and the system monitor. Bit 0 is set if the TDC tempera-
ture exceeds 140 °C. In this case the TDC did shut down and the device needs to be reinitialized.

int pcie_pwr_mgmt
Always 0.

int pcie_link_width
Number of PCle lanes the card uses. Should always be 10 for the xTDCA4.

int pcie_max_payload
Maximum size in bytes for one PCle transaction. Depends on system configuration.

4.5 Configuration

The device is configured with a configuration structure. The user should first obtain a structure that
contains the default settings of the device read from an on-board ROM, then modify the structure as
needed for the user application and use the result to configure the device.

int xtdc4_configure(xtdc4_device *device, xtdc4_configuration xconfig)
Configures the xtdc4_manager.

int xtdc4_get_current_configuration(xtdc4_device *device,
xtdc4_configuration *config)
Gets current configuration. Copies the current configuration to the specified config pointer.

int xtdc4_get_default_configuration(xtdc4_device *device,
xtdc4_configuration *config)
Gets default configuration. Copies the default configuration to the specified config pointer.

17 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

18

4.5.1 Structure xtdc4_configuration

This is the structure containing the configuration information. Itis used in conjunction with
xtdc4_get_default_configuration(), xtdc4_get_current_configuration() and
xtdc4_configure().

It uses multiple substructures to configure various aspects of the board.
int size
The number of bytes occupied by the structure.

int version
A version number that is increased when the definition of the structure is changed. The increment
can be larger than one to match driver version numbers or similar.

int tdc_mode
TDC mode. Can be grouped or continuous defined as follows:

#define XTDC4_TDC_MODE_GROUPED 0

#define XTDC4_TDC_MODE_CONTINUOUS 1

* Grouped functionality is explained in Section 3.2.

e Not applicable for the xTDCA4.

crono_bool_t start_rising
Selects whether the rising or falling edge of the start signal is used to start a group.

double dc_offset[XTDC4_TDC_CHANNEL_COUNT + 1]
Set the threshold voltage for the input channels S, A ...D (see Figure 4.1).

e dc_offset[0] : threshold for channel Start
e dc_offset[1 - 4]: threshold for channels A ...D

The supported range is —1.32V to 1.18 V. This should be close to 50% of the height of the input
pulse. Examples for various signaling standards are defined as follows:

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

19

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

Lemo 00 connector

Y IL
]
O
I
N
>
P
o

DAC

dc_offset[i]

Figure 4.1 Input circuit for each of the input channels.

XTDC4_DC_OFFSET_P_NIM
XTDC4_DC_OFFSET_P_CMOS
XTDC4_DC_OFFSET_P_LVCMOS_33
XTDC4_DC_OFFSET_P_LVCMOS_25
XTDC4_DC_OFFSET_P_LVCMOS_18
XTDC4_DC_OFFSET_P_TTL
XTDC4_DC_OFFSET_P_LVTTL_33
XTDC4_DC_OFFSET_P_LVTTL_25
XTDC4_DC_OFFSET_P_SSTL_3
XTDC4_DC_OFFSET_P_SSTL_2
XTDC4_DC_OFFSET_N_NIM
XTDC4_DC_OFFSET_N_CMOS
XTDC4_DC_OFFSET_N_LVCMOS_33
XTDC4_DC_OFFSET_N_LVCMOS_25
XTDC4_DC_OFFSET_N_LVCMOS_18
XTDC4_DC_OFFSET_N_TTL
XTDC4_DC_OFFSET_N_LVTTL_33
XTDC4_DC_OFFSET_N_LVTTL_25
XTDC4_DC_OFFSET_N_SSTL_3

XTDC4_DC_OFFSET_N_SSTL_2

+0.

+1.

+1.

+1.

+0.

+1.

+1

+1.

+1.

+1.

35

18

18

18

90

18

.18

18

18

18

.35

.32

.32

.25

.90

.32

.32

.25

.32

.25

The inputs are AC coupled. Thus, the absolute voltage is not important for pulse inputs. Itis the
relative pulse amplitude that causes the input circuits to switch. The parameter must be set to
the relative switching voltage for the input standard in use. If the pulses are negative, a negative

switching threshold must be set and vice versa.

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

20

xtdc4_trigger trigger[XTDC4_TRIGGER_COUNT]
Configuration of the polarity of the external trigger sources (see Section 4.5.2). These are used as
inputs for the TiGer blocks and as inputs to the time measurement unit.

xtdc4_tiger_block tiger_block[XTDC4_TIGER_COUNT]
Configuration of the timing generators (TiGer, see Section 4.5.3).

xtdc4_channel channel[XTDC4_TDC_CHANNEL_COUNT]
Configuration of the TDC channels.

xtdc4_lowres_channel
xtdc4_lowres_channel[XTDC4_LOWRES_CHANNEL_COUNT]
Only applicable to the xTDC4-Sciex. Configures the additional digital low-res inputs.

uint32_t auto_trigger_period
uint32_t auto_trigger_random_exponent
Create a trigger either periodically or randomly. There are two parameters

M = auto_trigger_period

N = random_exponent

that result in a distance between triggers of T clock cycles.

T=M+[1.2V—1
0<M< 2%
0<N<32

There is no enable or reset. The auto-trigger is running continuously. The usage of this trigger can
be configured in the TiGer block source field.

4.5.2 Structure xtdc4_trigger

For each input, this structure determines whether rising or falling edges on the inputs create trigger
events for the TiGer blocks.

crono_bool_t falling

crono_bool_t rising
Select for which edges a trigger event is created inside the FPGA. The xTDC4can output mea-
surements with a reduced bin size of 5/6 ns = 833.333 ps for one or both edges of input signals.
See section 3.1 for more information on hits with varying resolution. Use xTDC4_channel.rising on
page 21 to select which edge is measured with full resolution. The edge that is selected for full
resolution measurement must also be enabled for low resolution measurement.

4.5.3 Structure xtdc4_tiger_block
See Section 3.4 for additional information.

crono_bool_t enable
Activates the timing generator (TiGer).

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

21

crono_bool_t negate
Inverts output polarity. Default is set to false.

crono_bool_t retrigger
Enables retrigger setting.

If enabled the timer is reset to the value of the start parameter, whenever the input signal is set
while waiting to reach the stop time.

crono_bool_t extend
Not implemented.

crono_bool_t enable_lemo_output
Enables the LEMO output. Drive the TiGer Signal to the corresponding LEMO connector as an
output. This is DC coupled, so make sure that you do not any devices connected as inputs. Pulses
created by the TiGer are visible at the inputs of the xTDC4 and can be measured again to get the
exact timing.

uint32_t start

uint32_t stop
In multiples of 20/3 ns = 6.666 ns The time during which the TiGer output is set, relative to the
trigger input. The parameters start and stop must fulfill the following conditions

0<start<stop<2'®—1.

If retriggering is enabled, the timer is reset to the value of the start parameter whenever the input
signal is set while waiting for the stop time.

int sources
A bit mask with a bit set for all trigger sources that can trigger this TiGer block. Default is
XTDC4_TRIGGER_SOURCE_S

#define XTDC4_TRIGGER_SOURCE_NONE 0x00000000

#define XTDC4_TRIGGER_SOURCE_S Ox00000001
#define XTDC4_TRIGGER_SOURCE_A Ox00000002
#define XTDC4_TRIGGER_SOURCE_B OXx00000004
#define XTDC4_TRIGGER_SOURCE_C Ox00000008
#define XTDC4_TRIGGER_SOURCE_D Ox00000010

#define XTDC4_TRIGGER_SOURCE_AUTO 0x00004000

#define XTDC4_TRIGGER_SOURCE_ONE Ox00008000

4.5.4 Structure xtdc4_channel

Contains TDC channel settings.

crono_bool_t enabled
Enable the TDC channel.

crono_bool_t rising

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

Select which edge of the signal is used for full resolution measurements.
xtdc4_trigger.risingand xtdc4_trigger.falling described on Page 20 are used

to select which edges are recorded for low resolution measurement. The edge that is selected
for full resolution measurement must also be enabled for low resolution measurement. See
Section 3.1 for more information on hits with varying resolution.

crono_bool_t cc_enable
Enable carry chain TDC. This is set to true by default and should be left unchanged.

crono_bool_t cc_same_edge
Sets whether the carry chain TDC records the same or opposite edge as the TDC chip. If the
same edge is selected, that carry chain TDC acts as a backup if the chip misses hits due to FIFO
overflows or short input pulses. If opposite edges are selected, both edges of a pulse can be
measured with reasonable resolution. See Section 3.1 for more information.

crono_bool_t ths788_disable
Disable full resolution timestamps. This is set to false by default and should be left unchanged.

uint32_t start

uint32_t stop
Veto function for grouping of hits into packets in multiples of the binsize. Only hits between start
and stop are read out. The parameters must adhere to the following relations:

0 < start < stop < 230

22 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

23

5 Run Time Control

5.1 Run Time Control

Once the devices are configured the following functions can be used to control the behaviour of the
devices. All of these functions return quickly with very little overhead, but they are not guaranteed to be
thread safe.

int xtdc4_start_capture(xtdc4_device *device)
Start data acquisition.

int xtdc4_pause_capture(xtdc4_device *device)
Pause a started data acquisition.

pause and continue have less overhead than start and stop but don't allow for a configuration
change.

int xtdc4_continue_capture(xtdc4_device *device)
Call this to resume data acquisition after a call to xtdc4_pause_capture().

pause and continue have less overhead than start and stop but don't allow for a configuration
change.

int xtdc4_stop_capture(xtdc4_device *device)
Stop data acquisition.

int xtdc4_start_tiger(xtdc4_device xdevice)

int xtdc4_stop_tiger(xtdc4_device *device)
Start and stop the timing generator. This can be done independently of the state of the data
acquisition.

5.2 Readout

The device provides a stream of packets, that are read in batches. A batch of packets is provided to the
application, it processes them, by storing important information in other structures. The batch that were
processed need to be acknowledged, so that the device can reuse the memory of these for the next
data. That means processing should be fast.

timetagger4_read_in in;
// automatically acknowledge all data as processed
in.acknowledge_last_read = 1;
volatile crono_packetx p = read_data.first_packet;
timetagger4_read_out out;
int status = timetagger4_read(device, &in, &out);
if (status == CRONO_READ_OK) {
while (p <= read_data.last_packet) {
processPacket(p);
p = crono_next_packet(p);

}
cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

int xtdc4_acknowledge(xtdc4_device *device, crono_packet xpacket)
Acknowledges the processing of the last read block. This is only necessary if xtdc4_read() is
not called with in.acknowledge_last_read set.

This feature allows to either free up partial DMA space early if there will be no call to
xtdc4_read() anytime soon. It also allows to keep data over multiple calls to xtdc4_read () to
avoid unnecessary copying of data.

int xtdc4_read(xtdc4_device *device, xtdc4_read_in *in,
xtdc4_read_out *out)
Return a pointer to an array of captured data in read_out. The result contains a batch of pack-
ets of type xtdc4_packet. The batch is described by first_packet and last_packet in the
xtdc4_read_1in structure.

read_in provides parameters to the driver. A call to this method automatically allows the driver
to reuse the memory returned in the previous call if read_in.acknowledge_last_read is set.

Returns an error code as defined in the structure xtdc4_read_out.

crono_packet crono_next_packet(crono_packet *packet)
Iterates to the next packet in the batch.

5.2.1 Input Structure xtdc4_read_in

crono_bool_t acknowledge_last_read
If set xtdc4_read() automatically acknowledges packets from the last read. Otherwise
xtdc4_acknowledge () needs to be called explicitly by the user.

5.2.2 Input Structure xtdc4 read_out

crono_packet xfirst_packet
Pointer to the first packet that was captured by the call of xtdc4_read ().

crono_packet *last_packet
Address of header of the last packet in the buffer. This packet is still valid, all data after this packet
is invalid.

int error_code
Assignments of the error codes.

#define CRONO_READ_OK 0
#define CRONO_READ_NO_DATA 1
#define CRONO_READ_INTERNAL_ERROR 2

#define CRONO_READ_TIMEOUT 3

const char *error_message
The last error in human readable form, possibly with additional information about the error.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

6 Output Data Format

6.1 Output Structure crono_packet

Output of a read call list is a group of crono_packet structures. Which have a variable length. The
structure contains the following fields.

uint8_t channel
Index of the source channel of the data. Pseudo channel 15 is used for rollovers.

uint8_t card
Identifies the source card in case there are multiple boards present. Defaults to 0 if no value is
assigned to the parameter board_1id in structure timetagger4_init_parameters.

uint8_t type
The data stream consists of 32-bit unsigned data as signified by
CRONO_PACKET_TYPE_32_BIT_UNSIGNED = 6.

uint8_t flags
Bit field of TIMETAGGER4 _PACKET_FLAG_* bits:

#define XTDC4_PACKET_FLAG_ODD_HITS 1
If this bit is set, the last data word in the data array consists of one timestamp only which is located
in the lower 32 bits of the 64-bit data word (little endian).

#define XTDC4_PACKET_FLAG_SLOW_SYNC 2
Timestamp of a hit is above the range of 8-bit rollover number and 24-bit hit timestamp. The
group is closed, all other hits are ignored.

#define XTDC4_PACKET_FLAG_START_MISSED 4
The trigger unit has discarded packets due to a full FIFO because the data rate is too high. Starts
are missed and stops are potentially in wrong groups.

#define XTDC4_PACKET_FLAG_SHORTENED 8
The trigger unit has shortened the current packet due to a full pipeline FIFO because the data
rate is too high. Stops are missing in the current packet.

#define XTDC4_PACKET_FLAG_DMA_FIFO_FULL 16
The internal DMA FIFO was full. This is caused either because the data rate is too high on too
many channels. Packet loss is possible.

#define XTDC4_PACKET_FLAG_HOST_BUFFER_FULL 32

The host buffer was full. Might result in dropped packets. This is caused either because the
data rate is too high or by data not being retrieved fast enough from the buffer. Solutions are
increasing buffer size if the overload is temporary or by avoiding or optimizing any additional
processing in the code that reads the data.

uint32_t length
Number of 64-bit elements (each containing up to 2 TDC hits) in the data array. The number of
hits contained is equalto 2 * length - (flags & PACKET_FLAG_ODD_HITS) ? 1 : 0.

uint64_t timestamp
Coarse timestamp of the start pulse. Values are given in multiples of 5/3 = 1.6ns.

25 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

uint64_t data[1]

Contains the TDC hits as a variable length array (length can be zero). The user can cast the array
to uint32_tx to directly operate on the TDC hits. For the number of hits, see length. Structure of
one hit (32 bit):

bits

31 to 8|7 to 4|3 to O

content

TDC DATA FLAGS CHN

The timestamp of the hit is stored in bits 31 down to 8 in multiples of 5/(3 x 128) = 13.02083 ps

uint32_t timestamp = (hit >> 8) & OxF;

uint32_t flags
uint32_t channel

(hit >> 4) & OxF;
hit & OxF;

Bits 7 down to 4 are hit flags and have the following definitions:

o #define XTDC4_HIT_FLAG_FPGA_MISSING 8 < Bit7
#define XTDC4_HIT_FLAG_COARSE_TIMESTAMP 4 < Bit6é
Bit 7, 6: Resolution of this measurement (see Section 3.1).

bit 7 | bit6é || Measurement Type

0 0 Normal full resolution measurement.
0 1 Measurement performed with carry chain TDC at about 150 ps resolution.
1 0 Full resolution measurement that might in the wrong place in the data stream.

1

1

Measurement with only 5/6 ns = 833.3 ps resolution.

e #define XTDC4_HIT_FLAG_TIME_OVERFLOW 2 «+ Bit5
Bit 5: Rollover. The time since start pulse exceeded the 24-bit range that can be encoded
in a data word. This word does not encode a measurement. Instead the readout software
should increment a rollover counter that can be used as the upper bits of consecutive time
stamps. The counters should be reset for each packet. The total offset of a hitin picosec-
onds can be computed by

AT, = (#rollovers x xtdc4_static_info.rollover_period + TDC_DATA,;)

X xtdc4_param_info.binsize

e #define XTDC4_HIT_FLAG_RISING 1« Bit4
Bit 4: Set if this hit is a rising edge. Otherwise, this word belongs to a falling edge. The
channel number is given in the lowest nibble of the data word.
A value of 0 corresponds to channel A, a value of 3 to channel D.

26 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4

27

/7 Code Example

The following C++ source code shows how to initializes a an xTDC4 board, configure it and loop over
incoming packets.

If you are reading this documentation in portable document format (PDF), the source code of the C
example is also embedded as an attachment to the file. You can open itin an external viewer or save it
to disk by clicking on it.

// xtdc4_user_guide_example.cpp : Example application for the xTDC4
#include "xTDC4_interface.h"

#include "stdio.h"

#include <windows.h>

typedef unsigned int uint32;
typedef unsigned __int64 uint64;

xtdc4_device * dinitialize_xtdc4(int buffer_size, int board_id, int card_index) {
// prepare initialization

xtdc4_init_parameters params;

xtdc4_get_default_init_parameters(¶ms);

params.buffer_size[0] = buffer_size; // size of the packet buffer

params.board_id = board_-id; // value copied to "card" field «
of every packet, allowed range 0..255

params.card_index = card_index; // which of the xTDC4 board found<«>

in the system to be used

int error_code;

const char * err_message;

xtdc4_device * device = xtdc4_init(¶ms, &error_code, &err_message);

if (error_code != CRONO_OK) {
printf("Could not init xTDC4 compatible board: %s\n", err_message);
return nullptr;

}

return device;

int configure_xtdc4(xtdc4_device x device) {
// prepare configuration
xtdc4_configuration config;

// fill configuration data structure with default values
// so that the configuration is valid and only parameters
// of interest have to be set explicitly
xtdc4_get_default_configuration(device, &config);

// set config of the 4 TDC channels
for (int i = 0; i < XTDC4_TDC_CHANNEL_COUNT; 1++)
{
// enable recording hits on TDC channel
config.channel[i].enabled = true;

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

xtdc/example.cpp
// xtdc4_user_guide_example.cpp : Example application for the xTDC4

#include "xTDC4_interface.h"

#include "stdio.h"

#include <windows.h>

typedef unsigned int uint32;

typedef unsigned __int64 uint64;

xtdc4_device * initialize_xtdc4(int buffer_size, int board_id, int card_index) {

 // prepare initialization

 xtdc4_init_parameters params;

 xtdc4_get_default_init_parameters(¶ms);

 params.buffer_size[0] = buffer_size; // size of the packet buffer

 params.board_id = board_id; // value copied to "card" field of every packet, allowed range 0..255

 params.card_index = card_index; // which of the xTDC4 board found in the system to be used

 int error_code;

 const char * err_message;

 xtdc4_device * device = xtdc4_init(¶ms, &error_code, &err_message);

 if (error_code != CRONO_OK) {

 printf("Could not init xTDC4 compatible board: %s\n", err_message);

 return nullptr;

 }

 return device;

}

int configure_xtdc4(xtdc4_device * device) {

 // prepare configuration

 xtdc4_configuration config;

 // fill configuration data structure with default values

 // so that the configuration is valid and only parameters

 // of interest have to be set explicitly

 xtdc4_get_default_configuration(device, &config);

 // set config of the 4 TDC channels

 for (int i = 0; i < XTDC4_TDC_CHANNEL_COUNT; i++)

 {

 // enable recording hits on TDC channel

 config.channel[i].enabled = true;

 // define range of the group

 config.channel[i].start = 0; // range begins right after start pulse

 config.channel[i].stop = 30000; // recording window stops after ~390 ns (30000 * 13.02ps)

 // measure only falling edge

 config.trigger[i + 1].falling = 1;

 config.trigger[i + 1].rising = 0;

 }

 // start group on falling edges on the start channel 0

 config.trigger[0].falling = 1; // enable packet generation on falling edge of start pulse

 config.trigger[0].rising = 0; // disable packet generation on rising edge of start pulse

 // generate an internal 200 kHz trigger

 config.auto_trigger_period = 750; // multiples of 6.666 ns

 config.auto_trigger_random_exponent = 0;

 // setup TiGeR

 // sending a signal to the LEMO outputs (and to the TDC on the same channel)

 // requires proper 50 Ohm termination on the LEMO output to work reliably

 // use 200 kHz auto trigger to generate

 // a 200 kHz signal with 12 ns pulse width on LEMO output Start

 config.tiger_block[0].enable = 1;

 config.tiger_block[0].start = 0;

 config.tiger_block[0].stop = config.tiger_block[0].start + 1;

 config.tiger_block[0].negate = 0;

 config.tiger_block[0].retrigger = 0;

 config.tiger_block[0].extend = 0;

 config.tiger_block[0].enable_lemo_output = 1;

 config.tiger_block[0].sources = XTDC4_TRIGGER_SOURCE_AUTO;

 // if TiGeR is used for triggering with positive pulses

 config.dc_offset[0] = XTDC4_DC_OFFSET_P_LVCMOS_18;

 // write configuration to board

 return xtdc4_configure(device, &config);

}

double get_binsize(xtdc4_device * device) {

 xtdc4_param_info parinfo;

 xtdc4_get_param_info(device, &parinfo);

 return parinfo.binsize;

}

void print_device_information(xtdc4_device * device) {

 // print board information

 xtdc4_static_info staticinfo;

 xtdc4_get_static_info(device, &staticinfo);

 printf("Board Serial : %d.%d\n", staticinfo.board_serial >> 24, staticinfo.board_serial & 0xffffff);

 printf("Board Configuration : 0x%x\n", staticinfo.board_configuration);

 printf("Board Revision : %d\n", staticinfo.board_revision);

 printf("Firmware Revision : %d.%d\n", staticinfo.firmware_revision, staticinfo.subversion_revision);

 printf("Driver Revision : %d.%d.%d\n", ((staticinfo.driver_revision >> 16) & 255), ((staticinfo.driver_revision >> 8) & 255), (staticinfo.driver_revision & 255));

 printf("Driver SVN Revision : %d\n", staticinfo.driver_build_revision);

 printf("\nTDC binsize : %0.2f ps\n", get_binsize(device));

}

void print_hit(uint32 hit, double binsize) {

 // extract channel number (A-D)

 char channel = 65 + (hit & 0xf);

 // extract hit flags

 int flags = (hit >> 4 & 0xf);

 // extract hit timestamp

 int ts_offset = (hit >> 8 & 0xffffff);

 // TDC bin size is 13.02 ps. Convert timestamp to ns.

 double ts_offset_ns = ts_offset;

 ts_offset_ns *= binsize / 1000.0;

 printf("Hit @Channel %c - Flags %d - Offset %u (raw) / %.1f ns\n", channel, flags, ts_offset, ts_offset_ns);

}

_int64 process_packet(_int64 group_abs_time_old, volatile crono_packet *p, int update_count, double binsize) {

 // do something with the data, e.g. calculate current rate

 _int64 group_abs_time = p->timestamp;

 // group timestamp increments at 600 MHz

 double rate = (600000000 / ((double)(group_abs_time - group_abs_time_old) / (double)update_count));

 printf("\r%.2f kHz ", rate / 1000.0);

 // ...or print hits (not a good idea at high data rates,

 printf("Card %d - Flags %d - Length %d - Type %d - TS %llu\n", p->card, p->flags, p->length, p->type, p->timestamp);

 // There fit two hits into every 64 bit word.

 // The flag with weight 1 tells us, whether the number of hits in the packet is odd

 int hit_count = 2 * (p->length);

 if ((p->flags & 0x1) == 1)

 hit_count -= 1;

 uint32* packet_data = (uint32*)(p->data);

 for (int i = 0; i < hit_count; i++)

 {

 print_hit(packet_data[i], binsize);

 }

 printf("\n\n");

 return group_abs_time;

}

int main(int argc, char* argv[]) {

 printf("cronologic xtdc4_user_guide_example using driver: %s\n", xtdc4_get_driver_revision_str());

 xtdc4_device * device = initialize_xtdc4(8 * 1024 * 1024, 0, 0);

 int status = configure_xtdc4(device);

 if (status != CRONO_OK) {

 printf("Could not configure xTDC4: %s", xtdc4_get_last_error_message(device));

 xtdc4_close(device);

 return status;

 }

 print_device_information(device);

 // configure readout behaviour

 xtdc4_read_in read_config;

 // automatically acknowledge all data as processed

 // on the next call to xtdc4_read()

 // old packet pointers are invalid after calling xtdc4_read()

 read_config.acknowledge_last_read = 1;

 // structure with packet pointers for read data

 xtdc4_read_out read_data;

 // start data capture

 status = xtdc4_start_capture(device);

 if (status != CRONO_OK) {

 printf("Could not start capturing %s", xtdc4_get_last_error_message(device));

 xtdc4_close(device);

 return status;

 }

 // start timing generator

 xtdc4_start_tiger(device);

 // some book keeping

 int packet_count = 0;

 int empty_packets = 0;

 int packets_with_errors = 0;

 bool last_read_no_data = false;

 _int64 group_abs_time = 0;

 _int64 group_abs_time_old = 0;

 int update_count = 100;

 double binsize = get_binsize(device);

 printf("Reading packets:\n");

 // read 10000 packets

 while (packet_count < 10000)

 {

 // get pointers to acquired packets

 status = xtdc4_read(device, &read_config, &read_data);

 if (status != CRONO_OK) {

 Sleep(100);

 printf(" - No data! -\n");

 }

 else

 {

 // iterate over all packets received with the last read

 volatile crono_packet* p = read_data.first_packet;

 while (p <= read_data.last_packet)

 {

 // printf is slow, so this demo only processes every 1000th packet

 // your application would of course collect every packet

 if (packet_count % update_count == 0) {

 group_abs_time = process_packet(group_abs_time, p, update_count, binsize);

 }

 p = crono_next_packet(p);

 packet_count++;

 }

 }

 }

 // shut down packet generation and DMA transfers

 xtdc4_stop_capture(device);

 // deactivate xTDC4

 xtdc4_close(device);

 return 0;

}

Example Source Code

https://www.cronologic.de

42
43

44

45

46
47
48
49
50
51
52

53

54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

28

// define range of the group

config.channel[i].start = 0; // range begins right after start ¢

pulse

config.channel[i].stop = 30000; // recording window stops after ~390 <«

ns (30000 * 13.02ps)

// measure only falling edge
config.trigger[i + 1].falling = 1;
config.trigger[i + 1].rising = 0;

// start group on falling edges on the start channel 0

config.trigger[0].falling = 1; // enable packet generation on falling edge ¢

of start pulse

config.trigger[0].rising = 0; // disable packet generation on rising edge <

of start pulse
// generate an internal 200 kHz trigger
config.auto_trigger_period = 750;

config.auto_trigger_random_exponent = 0;

// setup TiGeR

// multiples of 6.666 ns

// sending a signal to the LEMO outputs (and to the TDC on the same channel)
// requires proper 50 Ohm termination on the LEMO output to work reliably

// use 200 kHz auto trigger to generate

// a 200 kHz signal with 12 ns pulse width on LEMO output Start

config.tiger_block[0].enable = 1;
config.tiger_block[@].start = 0;

config.tiger_block[0].stop = config.tiger_block[0].start + 1;

config.tiger_block[0].negate = 0;
config.tiger_block[0].retrigger = 0;
config.tiger_block[0].extend = 0;

config.tiger_block[0].enable_lemo_output =

config.tiger_block[0].sources = XTDC4_TRIGGER_SOURCE_AUTO;

// if TiGeR 1is used for triggering with positive pulses
config.dc_offset[0] = XTDC4_DC_OFFSET_P_LVCMOS_18;

// write configuration to board
return xtdc4_configure(device, &config);

double get_binsize(xtdc4_device * device) {
xtdc4_param_info parinfo;
xtdc4_get_param_info(device, &parinfo);
return parinfo.binsize;

void print_device_information(xtdc4_device * device) {

// print board information
xtdc4_static_info staticinfo;

xtdc4_get_static_info(device, &staticinfo);

printf("Board Serial ¢ %d.%d\n", staticinfo.board_serial >> 24,

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

17

1

8

119
120
121

122

123
124
125

126

127
128

129

130
131

132

134
135
136
137

138

29

staticinfo.board_serial & Oxffffff);

printf("Board Configuration : 0x%x\n", staticinfo.board_

configuration);

printf("Board Revision : %d\n", staticinfo.board_revision);
printf("Firmware Revision ¢ %d.%d\n", staticinfo.firmware_revision, <

staticinfo.subversion_revision);
printf("Driver Revision ¢ %d.%d.%d\n", ((staticinfo.

driver_revision >> ¢

16) & 255), ((staticinfo.driver_revision >> 8) & 255), (staticinfo.<«

driver_revision & 255));

printf("Driver SVN Revision : %d\n", staticinfo.driver_build_revision);
printf("\nTDC binsize : %0.2f ps\n", get_binsize(device));

void print_hit(uint32 hit, double binsize) {
// extract channel number (A-D)
char channel = 65 + (hit & 0xf);

// extract hit flags
int flags = (hit >> 4 & 0xf);

// extract hit timestamp
int ts_offset = (hit >> 8 & Oxffffff);

// TDC bin size is 13.02 ps. Convert timestamp to ns.
double ts_offset_ns = ts_offset;
ts_offset_ns *= binsize / 1000.0;

printf("Hit @Channel %c - Flags %d - Offset %u (raw) / %.1f ns\n", channel, ¢«

flags, ts_offset, ts_offset_ns);

_int64 process_packet(_int64 group_abs_time_old, volatile crono_

update_count, double binsize) {

packet *p, int <

// do something with the data, e.g. calculate current rate

_int64 group_abs_time = p->timestamp;
// group timestamp increments at 600 MHz

double rate = (600000000 / ((double) (group_abs_time - group_abs_time_old) / («

double)update_count));
printf("\r%.2f kHz ", rate / 1000.0);

// ...or print hits (not a good idea at high data rates,

printf("Card %d - Flags %d - Length %d - Type %d - TS %llu\n", p->card, p->¢

flags, p->length, p->type, p->timestamp);

// There fit two hits into every 64 bit word.

// The flag with weight 1 tells us, whether the number of hits in the packet ¢«

is odd
int hit_count = 2 * (p->length);
if ((p->flags & 0x1) == 1)
hit_count -= 1;

uint32*x packet_data = (uint32x*) (p->data);
for (int i = 0; i < hit_count; i++)
{

print_hit(packet_data[i], binsize);

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

139
140
141
142
143

144

145
146
147
148
149

150

151

152

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170

171
172
173
174
175
176
177
178
179
180
181
182
183

184

186
187
188
189

190

30

printf("\n\n");
return group_abs_time;

int main(int argc, charx argv[]) {

printf("cronologic xtdc4_user_guide_example using driver: %s\n", <«

xtdc4_get_driver_revision_str());

xtdc4_device * device = dnitialize_xtdc4(8 x 1024 * 1024, 0, 0);

int status = configure_xtdc4(device);
if (status != CRONO_OK) {

printf("Could not configure xTDC4: %s", xtdc4_get_last_error_message (>

device));
xtdc4_close(device);
return status;

print_device_information(device);

// configure readout behaviour

xtdc4_read_in read_config;

// automatically acknowledge all data as processed
// on the next call to xtdc4_read()

// old packet pointers are invalid after calling xtdc4_read()

read_config.acknowledge_last_read = 1;

// structure with packet pointers for read data
xtdc4_read_out read_data;

// start data capture
status = xtdc4_start_capture(device);
if (status != CRONO_OK) {

printf("Could not start capturing %s", xtdc4_get_last_error_message(+°

device));
xtdc4_close(device);
return status;

// start timing generator
xtdc4_start_tiger(device);

// some book keeping

int packet_count = 0;

int empty_packets = 0;

int packets_with_errors = 0;
bool last_read_no_data = false;

_1int64 group_abs_time = 0;

_int64 group_abs_time_old = 0;

int update_count = 100;

double binsize = get_binsize(device);

printf("Reading packets:\n");
// read 10000 packets

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

191 while (packet_count < 10000)

192 {

193 // get pointers to acquired packets

194 status = xtdc4_read(device, &read_config, &read_data);

195 if (status != CRONO_OK) {

196 Sleep(100);

197 printf(" - No data! -\n");

198 }

199 else

200 {

201 // iterate over all packets received with the last read

202 volatile crono_packetx p = read_data.first_packet;

203 while (p <= read_data.last_packet)

204 {

205 // printf is slow, so this demo only processes every <
1000th packet

206 // your application would of course collect every <«
packet

207 if (packet_count % update_count == 0) {

208 group_abs_time = process_packet(«°

group_abs_time, p, update_count, binsize)<
5

209 }

210 p = crono_next_packet(p);

211 packet_count++;

212 }

213 }

214 }

215

216 // shut down packet generation and DMA transfers

217 xtdc4_stop_capture(device);

218

219 // deactivate xTDC4

220 xtdc4_close(device);

221

222 return 0;

223}

31 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

8 Technical Data

Each board is tested against the values listed in the columns ‘Min" and ‘Max". ‘Typical’ is the mean value
of the first 10 boards produced or a value that is set by design.

8.1 TDC Characteristics

8.1.1 TDC measurement Characteristics

Symbol | Parameter Min | Typical Max Units
INL Integral nonlinearity 1 bins
DNL | Differential nonlinearity 0.5 bins
tgin Binsize 5000/384 ps

13.02083 ps
topran | Interval between edges for full resolution 5 ns
topce | Interval between edges for carry chain TDC 10 ns
torlow | INterval between edges for lowres measurements 1.8 ns
Ate. | Interval between consecutive starts 250 ns
trange | Measurement range using hits only 224 — 1| bins

218 us
tegtended | EXtended range using rollovers 230 1 ms

14 ms
freadout | Readout rate 48 MHits/s

8.1.2 Time Base

Symbol | Parameter Min | Typical | Max | Units
Temperature stability 20°C to 70°C 25 | ppb
Initial calibration 1 ppm
Aging first year 2 | ppm
Aging 10 years 8 ppm

32 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

33

8.2.1 Power Supply
Symbol | Parameter Min | Typical | Max | Units
Piotal Total power consumption 27 W
VCC;5 | PCle 3.3V rail power supply voltage 3.1 3.3 3.5 \
l33 PCle 3.3V rail input current 1.8 A
VCC,, | PCle 12V rail power supply voltage 11.1 120 | 12.9 \
5 PCle 12V rail input current 1.9 A
VCC,,, | PCle 3.3V, rail power supply voltage 3.3 \Y%
| ux PCle 3.3V, rail input current 0 A
8.2.2 TDC Inputs
The xTDC4's inputs are single-ended AC-coupled with 50 Q termination.
Symbol | Parameter Min Typical Max Units
VBase Input Baseline 0 5 \
Vihreshold | Trigger Level Vpase - 1.32 Voo + 1.18 \
tpylse Pulse Length 2 5 200 ns
tRise Pulse Edge 20% to 80% 10 ns
tean Pulse Edge 80% to 20% 10 ns
Zp Input Impedance 50 Q
I term Termination Current -50 -20 50 mA

All inputs are AC-coupled. The inputs have very high input bandwidth requirements and therefore there
are no circuits that provide over-voltage protection for these signals. Any voltage on the inputs above
5V or below -5V relative to the voltage of the slot cover can result in permanent damage to the board.

Keep in mind, that the input baseline Vg_, is affected by the ratio of pulse length tp . to average pulse
distance (for continuous signals the term is called duty cycle).

Make sure not to drive the inputs when the connector is configured as a TiGer output.

See Section 3.4.

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

8.3 Information Required by DIN EN 61010-1

8.3.1 Manufacturer

The xTDC4 is a product of:

cronologic GmbH & Co. KG
JahnstraBe 49
60318 Frankfurt

Germany HRA 42869 beim Amtsgericht Frankfurt/M

VAT-ID: DE235184378
PCl Vendor ID: 0x1A13

8.3.2 Intended Use and System Integration

The devices are not ready to use as delivered by cronologic. It requires the development of specialized
software to fulfill the application of the end-user. The device is provided to system integrators to be
built into measurement systems that are distributed to end users. These systems usually consist of the
xTDC4, a main board, a case, application software and possibly additional electronics to attach the
system to some type of detector. They might also be integrated with the detector.

The xTDC4 is designed to comply with DIN EN 61326-1 when operated on a PCle compliant main
board housed in a properly shielded enclosure. When operated in a closed standard compliant enclo-
sure the device does not pose any hazards as defined by EN 61010-1.

Radiated emissions, noise immunity, and safety highly depend on the quality of the enclosure. It is the
responsibility of the system integrator to ensure that the assembled system is compliant to applicable
standards of the country that the system is operated in, especially with regards to user safety and
electromagnetic interference.

When handling the board, adequate measures must be taken to protect the circuits against electrostatic
discharge (ESD). All power supplied to the system must be turned off before installing the board.

8.3.3 Environmental Conditions for Storage

The board shall be stored between operation under the following conditions:

Symbol | Parameter Min | Typical | Max | Units
Tsore | ambient temperature -30 60 °C
RHore | relative humidity at 31°C noncondensing 10 70 %

34 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

35

8.3.4 Environmental Conditions for Operation

The board is designed to be operated under the following conditions:

Symbol | Parameter Min | Typical | Max | Units
Toper | @ambient temperature 5 40 °C
RHoper | relative humidity at 31°C 20 75 %

WARNING: Do not connect any DC-coupled inputs to a channel while the TiGer of that channel is
configured as an output (see Section 3.4). Doing so could do permanent damage to the xTDC4 and the
external hardware.

8.3.5 Cooling

The xTDC4 in its base configuration has passive cooling that requires a certain amount of air-flow. If
the case design can't provide enough air-flow to the board, a slot cooler like Zalman ZM-SC100 can be
placed next to the board. Active cooling is also available as an option for the board.

8.3.6 Recycling

cronologic is registered with the “Stiftung Elektro-Altgerate Register” as a manufacturer of electronic
systems with Registration ID DE 77895%09.

The xTDC4 belongs to category 6, “Kleine Gerate der Informations- und Telekommunikationstechnik
fur die ausschlieBliche Nutzung in anderen als privaten Haushalten.” Devices sold before 2018 belong
to category 9, “Uberwachungs und Kontrollinstrumente fir ausschlieBlich gewerbliche Nutzung.” The
last owner of a xTDC4 must recycle it, treat the board in compliance with §11 and §12 of the German
ElektroG, or return it to the manufacturer’s address listed on Page 34.

cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

36

@ Revision History

User Guide 1.8.13 as of 2024-01-18
cronologic GmbH & Co. KG
JahnstraBBe 49

60318 Frankfurt am Main

Germany

9.1 Firmware

Revision Date Comments
2.22327 | 2022-11-18 | support for board revision 7
2.1134 | 2021-12-10 | Fixed TDC overtemp alarm issue
2.1126 | 2021-12-06 | Fixed possible register read issues
21117 | 2021-06-23 | Fixed register write issues
2.834 | 2017-12-05 | Internal optimizations
2.797 | 2015-09-08 | Hit sorting and packet generation issues fixed

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

37

Revision Date Comments
190 | 2023-07-10 added quant|z.at|(')n to timetagger4_param_info structure
Code refactorization
183 | 2023.06.07 | Minorbugfixes
Code refactorization
1.8.2 | 2023-05-17 | Added bounds and checks for various parameters
1.8.1 2023-05-09 | Renamed autotrigger mode to continuous mode
1.8.0 | 2023-05-05 | Added configurable input delay
Board Revision 7 support
1.7.0] 2023-04-18 TimeTagger4 : added autotrigger mode
kernel driver v1.4.2 for xTDC4 only
14.5 2022-10-17 (fixes crash on Windows for Thunderbolt hot-plug)
1.4.4 2022-06-27 | kernel driver v1.4.1
Firmware updated
1.4.2 | 2021-07-28 | ReadoutGUI added/updated
User guide example added/updated
1.4.1 2019-11-11 | x64 32 mode issues fixed
1.4.0 | 2019-06-04 | Improved Windows 10 support
1.3.0 2019-01-23 | Added Windows 10 support

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

38

Revision Date Comments
xHPTDC8: Updated cover
1813) 2024-01-18 TimeTagger4: Updated feature list
1.8.12 | 2024-01-10 | xHPTDC8: Updated driver revision history
Reformatting
Added latency between signal and Tiger output to Section 3.5
TimeTagger4: Updated table in Section 8.1.2
1.8.11 | 2023-11-29 | TimeTagger4: Clarifications in Features-list
TimeTaggerd: Added ignore_empty_packets APl documentation
xHPTDC8: Added default values for manager and configuration structs
xHPTDCS8: Fixed number of boards that can be synchronized from 8 to 6
1810 | 2023-07-28 Changgc! exfcended range values to 0.429 s and 2.147 s, respectively.
API clarifications.
1.8.9 2023-07-10 | TimeTagger4 Userguide rework
1.8.8 2023-03-15 | new TimeTagger4 variants -1.25G to -10G added
1.8.7 2022-11-24 | Firmware revision notes updated
Spelling and grammar corrections
186) 2022-11-23 new example source code for xHPTDC8
1.8.5 2021-12-17 | Clarifications related to TimeTagger4 configuration.
1.8.4 2021-12-08 | Updated grouping structure in xHPTDC8 API
1.8.3 2021-07-28 | Updated firmware revision history
Added software trigger and _SYNC trigger sources for xHPTDC8
Corrected 3.3V power requirement for xHPTDC8
182 2021-04-23 Changed types with fixed bit width to stdint.h for xHPTDC8
Added user flash functions for xHPTDC8
1.8.1 2021-04-09 | Many corrections and updates to the xHPTDC8 API
1.8.0 2021-03-22 | Added xHPTDC8 User Guide
Combined User Guide for -1G and -2G
Added characteristics for INL, DNL and Time Base
170 | 2021-02-04 Reordered s§ct|ons for clarity o
Error corrections for rollovers, binsize and range
Added figure 3.2 (TiGer matrix)
Corrected board revision
1.6.0 2019-06-05 | API clarifications

cronologic GmbH & Co. KG

xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

Erratum

We found undesired behaviour for Gen 1 devices of the xTDCA4.

If there are three or more edges close together (within 6.6 ns) and the user did only enable rising or
falling edges but not both, some of the edges are reported with the wrong polarity. To trigger this
behaviour you need to violate the tppq, parameter of the board that states that for full resolution you
may not have more than one pulse within a 5 ns interval.

If your configuration enables both edges all output data is correct. If you only need one type of edge
(rising or falling) there are three simple workarounds:

a) update the Firmware of your Gen 1 device to svn1192 or later.

b) enable both edges.

All output words will be correct and your software can ignore all data that doesn’t have the
desired polarity.

c) enable only the desired edge polarity

Ignore the polarity flag in the output data. You can trust that only edges with the desired polarity
are output, even if the flag in the data word states the wrong polarity.

39 cronologic GmbH & Co. KG xTDC4 - User Guide, Rev. 1.8.13

https://www.cronologic.de

	Introduction
	Features
	Applications

	Hardware
	Installing the Board
	xTDC4 Inputs and Connectors

	xTDC4 Functionality
	Handling of Difficult Hits
	Grouping and Events
	Auto-Triggering Function Generator
	Timing Generator (TiGer)

	Driver Programming API
	Constants
	Driver Information
	Initialization
	Structure xtdc4_init_parameters

	Status Information
	Functions for Information Retrieval
	Structure xtdc4_static_info
	Structure xtdc4_param_info
	Structure xtdc4_fast_info

	Configuration
	Structure xtdc4_configuration
	Structure xtdc4_trigger
	Structure xtdc4_tiger_block
	Structure xtdc4_channel

	Run Time Control
	Run Time Control
	Readout
	Input Structure xtdc4_read_in
	Input Structure xtdc4_read_out

	Output Data Format
	Output Structure crono_packet

	Code Example
	Technical Data
	TDC Characteristics
	TDC measurement Characteristics
	Time Base

	Electrical Characteristics
	Power Supply
	TDC Inputs

	Information Required by DIN EN 61010-1
	Manufacturer
	Intended Use and System Integration
	Environmental Conditions for Storage
	Environmental Conditions for Operation
	Cooling
	Recycling

	Revision History
	Firmware
	Driver & Applications
	User Guide

	Erratum

